Thermodynamics of Shrinkage of Fibrous (Racked) Rubber

1958 ◽  
Vol 31 (3) ◽  
pp. 485-498
Author(s):  
J. F. M. Oth ◽  
P. J. Flory

Abstract Highly oriented natural rubber samples of Roberts and Mandelkern, prepared by racking and subsequently crosslinked using γ-radiation, undergo a spontaneous shrinkage upon melting which closely resembles the shrinkage of collagen. If the transformation is arrested by application of a tensile force, a state of equilibrium may be established between two distinct zones, or phases, one being totally amorphous (shrunken) and the other unchanged (i.e., racked). Determination of the stress τeq required for phase equilibrium at various temperatures is described. Extrapolation to τeq=0 gives equilibrium melting temperatures Tmi, which are about 8° below the temperatures Tsi for spontaneous shrinkage. The heat of transformation of racked to amorphous rubber calculated from the dependence of τeq on T is 4.5 cal g−1. Since the degree of crystallinity is only 0.24, the heat of fusion calculated for 1 g of crystalline rubber is ca. 19 cal, which agrees satisfactorily with the value 15.3 cal, deduced by Roberts and Mandelkern through use of the melting point depression method. The shrinkage of racked rubber displays all of the important features associated with the similar contraction of fibrous proteins.

1991 ◽  
Vol 64 (1) ◽  
pp. 74-82 ◽  
Author(s):  
C. Michael Roland ◽  
Gary S. Buckley

Abstract The formation of a network in PTHF inhibits the crystallization of chain units in proximity to the crosslinks. From melting-point-depression measurements, it is estimated that the suppression in crystallizability extends to as much as 8 chain units away from a network junction. This estimate is consistent with the degree of crystallinity measured in various crosslinked PTHF rubbers. The equilibrium melting point for linear PTHF was determined to be 361°K. Although this is significantly higher than previously reported values, the present result is congruent with the melting temperatures measured for crosslinked PTHF, and its use leads to satisfactory predictions of their melting-point depression. The distribution in the lengths of network chains exerted a trivial influence on thermal crystallization behavior. Although this distribution must in principle influence crystallization behavior in so far as it governs crystallizable sequence lengths, differences between uni- and bi-modal network architectures were moderate under the present experimental conditions.


2021 ◽  
Vol 285 ◽  
pp. 07034
Author(s):  
Yulia Tertyshnaya ◽  
Maksim Zakharov ◽  
Alina Ivanitskikh ◽  
Anatoliy Popov

In the work an eco-friendly non-woven fiber made of polylactide and natural rubber with a rubber content from 0 to 15 wt.% was obtained by electrospinning. The influence of distilled water and UV irradiation on the agrofibers has been investigated. The water sorption test showed that the addition of natural rubber into the polylactide matrix does not significantly affect the degree of water absorption of the fibrous materials, which is in the range of 49-50.6%. Thermal characteristics after 180 days of degradation in distilled water at 22±2 oC and UV irradiation at a wavelength of 365 nm during 100 hours were determined using the differential scanning calorimetry. Changes in the values for glass transition and melting temperatures, and the degree of crystallinity were determined.


2019 ◽  
Vol 951 ◽  
pp. 21-25
Author(s):  
Achmad Chafidz ◽  
Sholeh Ma'mun ◽  
Haryanto ◽  
Wara Dyah Pita Rengga ◽  
Prima A. Handayani ◽  
...  

In this study, PP/clay nanocomposites have been fabricated at different nanoclay loadings, i.e. 0, 5, 10, and 5 wt% for the 1stcycle and 2ndcycle (re-processing). The prepared nanocomposites were then characterized by a Differential Scanning Calorimetry (DSC) to investigate the effects of nanoclay loadings and re-processing on the melting and crystallization of the nanocomposites. The DSC results showed that the melting temperature,Tmwas not significantly affected by the nanoclay loadings and re-processing. In the other hand, the degree of crystallinity,Xcof the nanocomposites was higher than that of neat PP, but only reached a maximum at nanoclay loading of 5 wt% (i.e. 51.2% for NC-5-I and 48.3% for NC-5-II). Thereafter, theXcdecreased at higher nanoclay loadings. There was no significant difference inXcbetween 1stcycle and 2ndcycle. Additionally, in all nanocomposites samples for both cycles, there were two crystallization temperatures, i.e.Tc1andTc2. In the overall crystallization process, theTcof nanocomposites increased by 11-12°C compared to that of neat PP. Whereas, the onset crystallization temperature,Tocalso increased by approx. 13°C. Apparently, there was no significant effect of nanoclay loadings and re-processing on theTcndTocof the nanocomposites.


1993 ◽  
Vol 26 (3) ◽  
pp. 473-480 ◽  
Author(s):  
Stojan R. Stojković ◽  
Živan D. Živković ◽  
Ivana S. G. Stojković ◽  
Nada D. Štrbac

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4356
Author(s):  
Evgeniy M. Chistyakov ◽  
Sergey N. Filatov ◽  
Elena A. Sulyanova ◽  
Vladimir V. Volkov

A new method for purification of 2-methyl-2-oxazoline using citric acid was developed and living cationic ring-opening polymerization of 2-methyl-2-oxazoline was carried out. Polymerization was conducted in acetonitrile using benzyl chloride—boron trifluoride etherate initiating system. According to DSC data, the temperature range of melting of the crystalline phase of the resulting polymer was 95–180 °C. According to small-angle X-ray scattering and wide-angle X-ray diffraction data, the degree of crystallinity of the polymer was 12%. Upon cooling of the polymer melt, the polymer became amorphous. Using thermogravimetric analysis, it was found that the thermal destruction of poly(2-methyl-2-oxazoline) started above 209 °C.


1994 ◽  
Vol 48 (4) ◽  
pp. 465-471 ◽  
Author(s):  
R. Belali ◽  
J. M. Vigoureux

We examine the problem which occurs when distinct absorption bands are compared. This problem is linked to the variation of the analyzed thickness of the sample according to the wavelength of the incident beam. Theoretical and experimental corrections are proposed to solve this problem. The theoretical correction is next used to calculate the degree of crystallinity of three polyethylene terephtalate films which cannot be determined by the usual method of transmission spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document