Elastic Modulus of Vulcanizates as Related to Carbon Black Structure

1973 ◽  
Vol 46 (4) ◽  
pp. 877-896 ◽  
Author(s):  
A. I. Medalia

Abstract The elastic modulus Gf′ of filled SBR vulcanizates has been measured as a function of strain amplitude A. At low loadings of carbon black (20 phr), where Gf′ is practically independent of A, the value of Gf′ (at 25° C, 0.25 Hz) can be predicted within 5 per eent from the gum modulus Gg′ by the Guth—Gold equation with due allowance for occluded volume, as calculated from the dibutyl phthalate absorption. At normal loadings (50 phr) the value of Gf′ can be predicted fairly well from this treatment if the measurements are made at high amplitude. At 25° C, 0.25 Hz, Gf′ is about 10 per cent higher than predicted due to the residual effect of the carbon black network. The dependence of the high-amplitude Gf′ on frequency and temperature is essentially the same for various reinforcing and semi-reinforcing blacks. Consequently, the value of Gf′ for one black can be calculated from the values found for other blacks. The dependence of Gf′ on A is primarily a function of surface area, but in two cases the dependence is unusually steep for different reasons. With graphitized blacks the low-amplitude Gf′ is higher than that of the ungraphitized blacks, but the high-amplitude Gf′ is low, probably due to molecular slippage. “New technology” blacks, including N339 and N351, give a high-amplitude Gf′ comparable to that of conventional blacks of the same dibutyl phthalate absorption, but give a higher Gf′ at low amplitude, indicating a more effective network structure.

Author(s):  
Saied Taheri ◽  
Behzad Moslehi ◽  
Vahid Sotoudeh ◽  
Brad M. Hopkins

Early detection of rail defects can avoid derailments and costly damage to the train and railway infrastructure. Small breaks, cracks or corrugations on the rail can quickly propagate after only a few train cars have passed over it, creating a potential derailment. The current technology makes use of a dedicated instrumented car or a separate railway monitoring vehicle to detect large breaks. These cars are usually equipped with accelerometers mounted on the axle or side frame. The simple detection algorithms use acceleration thresholds which are set at high values to eliminate false positives. As a result, rail surface defects that produce low amplitude acceleration signatures may not be detected, and special track components that produce high amplitude acceleration signatures may be flagged as defects. This paper presents the results of a feasibility study conducted to develop new and more advanced sensory systems as well as signal processing algorithms capable of detecting various rail surface irregularities. A dynamic wheel-rail interaction model was used to simulate train dynamics as a result of rail defects and to assess the potential of this new technology on rail defect detection. In a future paper, we will present experimental data in support of the proposed model and simulations.


2008 ◽  
Vol 607 ◽  
pp. 186-188
Author(s):  
J. Wang ◽  
V.O. Jobando ◽  
C.A. Quarles

Carbon black (CB) is essentially carbon in the form of extremely fine particle aggregates (100-200nm) having an amorphous molecular structure. Oil absorption or compressed dibutyl phthalate (CDBP) and iodine adsorption or nitrogen surface area (N2SA) are parameters commonly used to describe CB morphology or structure and the surface area of CB available for reaction with rubber. We have used both positron lifetime and Doppler broadening spectroscopy to study these two parameters for a variety of rubber CB composite samples. The o-Ps pickoff lifetime depends only on the type of rubber and is independent of CDBP and N2SA. However, the o-Ps lifetime intensity, I3, and the S parameter decrease with both CDBP and N2SA.


Author(s):  
Patrick Stahl ◽  
G. Nakhaie Jazar

Non-smooth piecewise functional isolators are smart passive vibration isolators that can provide effective isolation for high frequency/low amplitude excitation by introducing a soft primary suspension, and by preventing a high relative displacement in low frequency/high amplitude excitation by introducing a relatively damped secondary suspension. In this investigation a linear secondary suspension is attached to a nonlinear primary suspension. The primary is assumed to be nonlinear to model the inherent nonlinearities involved in real suspensions. However, the secondary suspension comes into action only during a short period of time, and in mall domain around resonance. Therefore, a linear assumption for the secondary suspension is reasonable. The dynamic behavior of the system subject to a harmonic base excitation has been analyzed utilizing the analytic results derived by applying the averaging method. The analytic results match very well in the transition between the two suspensions. A sensitivity analysis has shown the effect of varying dynamic parameters in the steady state behavior of the system.


1948 ◽  
Vol 26a (2) ◽  
pp. 29-38 ◽  
Author(s):  
J. C. Arnell ◽  
G. O. Henneberry

The modified Kozeny equation has been found to be satisfactory for the measurement of the specific surfaces of carbon blacks having average particle diameters ranging from 0.01 to 0.1 μ to within ±10%. Comparative data were obtained from electron microscope counting and from low temperature nitrogen adsorption isotherms. The three methods examined gave results that were in satisfactory agreement, except when the carbon black was porous, and then the adsorption value was extremely large.


Geophysics ◽  
1997 ◽  
Vol 62 (5) ◽  
pp. 1365-1368
Author(s):  
M. Boulfoul ◽  
Doyle R. Watts

The petroleum exploration industry uses S‐wave vertical seismic profiling (VSP) to determine S‐wave velocities from downgoing direct arrivals, and S‐wave reflectivities from upgoing waves. Seismic models for quantitative calibration of amplitude variation with offset (AVO) data require S‐wave velocity profiles (Castagna et al., 1993). Vertical summations (Hardage, 1983) of the upgoing waves produce S‐wave composite traces and enable interpretation of S‐wave seismic profile sections. In the simplest application of amplitude anomalies, the coincidence of high amplitude P‐wave reflectivity and low amplitude S‐wave reflectivity is potentially a direct indicator of the presence of natural gas.


2020 ◽  
Vol 15 (5) ◽  
pp. 68-72
Author(s):  
V.L. Gritsinskaya ◽  
◽  
V.P. Novikova ◽  
A.I. Khavkin ◽  
◽  
...  

Objective. To identify specific features of pubertal growth spurt in adolescents depending on their nutritional status in prepuberty. Patients and methods. We analyzed the dynamics of height and weight in 645 children (331 boys and 314 girls) aged between 8 and 16 years. All study participants were divided into three groups depending on whether their weight and height at the age of 8 years were within the normal limits given in the ‘WHO Growth Reference 2007’: children with physical development; underweight children; and overweight children. Results. The dynamics of somatometric parameters during pubertal growth spurt varied between children with different nutritional status. Underweight boys demonstrated prolonged and low-amplitude pubertal growth pattern; in boys with normal physical development, the growth spurt was usually shorter and had high amplitude. In overweight boys, the pubertal growth spurt started with higher annual increase in height, had a more pronounced amplitude, and was shorter than in peers (р < 0.001 ÷ р < 0.05). Both underweight girls and girls with normal physical development demonstrated low-amplitude pubertal growth spurt lasting for two years. Overweight girls had two peaks of pubertal growth spurt, which usually started earlier than in other girls (р < 0.001 ÷ р < 0.01). Conclusion. Our findings can be used as a guide for predicting pubertal spurt in children during medical examinations, determining adequate physical activity in physical education classes at school and in sports sections. Key words: children, nutritional status, pubertal growth spurt


1980 ◽  
Vol 88 (1) ◽  
pp. 367-374
Author(s):  
A. E. BRAFIELD

Oxygen consumption by Calliactis parasitica, measured in a continuousflow polarographic respirometer, yielded a slope of 0·92 when plotted against body weight on log scales. This high value is discussed in terms of the sea anemone's basically laminate nature. Strip-chart records of the oxygen concentration of water which had just passed a specimen of Calliactis commonly showed rhythmic fluctuations, either of low amplitude and high frequency or high amplitude and low frequency (mean cycle lengths 11 and 34 min respectively). The fluctuations are explained in terms of rhythmic muscular contractions which irrigate the enteron for respiratory purposes. Analysis of the slow fluctuations indicates that the endoderm is responsible for about 18% of the total oxygen consumption. The oxygen concentration of water in the enteron, measured and recorded continuously, was 4–27% of the air-saturation level. These strip chart records also frequently showed rhythmic fluctuations (mean cycle length 12 min), apparently resulting from the muscular contractions.


Sign in / Sign up

Export Citation Format

Share Document