scholarly journals Boswellia sacra essential oil: Antioxidant activity and antifungal effect on some spoilage fungi causing strawberry rot

2021 ◽  
Vol 18 (114) ◽  
pp. 25-34
Author(s):  
Mostafa Rahmati-Joneidabad ◽  
Behrooz Alizadeh behbahani ◽  
◽  
Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 195 ◽  
Author(s):  
Vita Di Stefano ◽  
Domenico Schillaci ◽  
Maria Grazia Cusimano ◽  
Mohammed Rishan ◽  
Luay Rashan

Frankincense essential oils from Boswellia sacra have been commonly used to treat microbial infections from as early as the 11th century. The main feature of the plant is its gum resin, from which it is possible to obtain essential oils. In the present study, we focused on the comparative study of the oils extracted from the resins of three different Boswellia sacra cultivars (Najdi, Sahli and Houjri). From each of frankincense resin three successive essential oil samples (Grade 1, Grade 2, Grade 3) were obtained. Houjri gum resin gave the lowest percentage (5%) of total essential oil content but showed the maximum number of volatile components in all three grades. Najdi Grade 2 essential oil showed a minimum inhibitory concentration (MIC) of 52 mg/mL toward relevant pathogens Staphylococcus aureus and Pseudomonas aeruginosa, and samples from Grade 2 of Sahily and Houjiri were particularly active against a dermatological strain Propionibacterium acnes, displaying MIC values of 0.264 and 0.66 mg/mL, respectively. Data obtained from in vitro studies showed that all essential oils had a significant antifungal effect against Candida albicans and Malassezia furfur, showing MIC values ranging from 54.56 to 0.246 mg/mL. This work aims to increase the number of substances available in the fight against pathogens and to combat the phenomenon of antibiotic resistance, encouraging the use of alternative resources, especially in non-clinical settings (farms, food processing, etc.).


2005 ◽  
Vol 11 (1) ◽  
pp. 25-32 ◽  
Author(s):  
M. E. Guynot ◽  
S. MarÍn ◽  
L. SetÚ ◽  
V. Sanchis ◽  
A. J. Ramos

The antifungal effect of 20 essential oils against the most important moulds in terms of spoilage of bakery products ( Eurotiumspp., Aspergillusspp. and Penicilliumspp.) was investigated. Suitable solutions of essential oils were added directly to an agar culture medium (containing 2% wheat flour) to obtain a final concentration in the range between 0 to 1,000 ppm. Antifungal activity was tested at different water activity ( aw) and pH conditions, and the fungal growth was followed by measuring the colony diameter during the incubation period. Only cinnamon leaf, rosemary, thyme, bay and clove essential oils exhibited some antifungal activity against all isolates. The antifungal activity depended on aw and pH levels. In general, a stronger inhibition was observed as the water availability increased, moreover, in some cases at 0.80 aw they favoured fungal growth. The interaction between essential oil concentration and pH depended mainly on the essential oil. Rosemary, thyme and bay were more effective at pH 5, loosing their activity as pH increased, while only cinnamon leaf was more effective near neutrality. These findings strengthen the possibility of using plant essential oils as an alternative to chemicals to preserve bakery products.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mojgan Alizadeh ◽  
Akram Arianfar ◽  
Ameneh Mohammadi

Objective: Ziziphora clinopodioides is an edible medicinal plant belongs to the Labiatae family that widespread all over Iran. It used as culinary and also in cold and cough treatments in Iran. The aim of present work was to evaluate the effect of different timeframes during the hydrodistillation on essential oil composition, antimicrobial and antioxidant activity. Materials and Methods: The essential oil of Z. clinopodiodes was extracted via hydrodistillation with Clevenger apparatus. The fractions of essential oil were captured at 6 times from the beginning of the distillation: (10, 20, 60, 120, 180 and 240 min). The fractions of essential oil were analyzed by GC/MS and their antibacterial, antifungal and antioxidant activities were studied by Disk - well diffusion and DPPH methods respectively. Results: Six distillation times and whole essential oil were captured during the hydrodistillation. Essential oil yield dropped off significantly during distillation progressed (1.0% for 10 min and 0.025 for 240 min). 1,8 Cineol, Isomenthone, Pulegone, Piperitenone and Citronellic acid were major compounds in fractions and they were affected by distillation times. Pulegone was major compound in all of essential oils. In antioxidant activity assay, whole essential oil was stronger than was stronger than positive control and fractions of essential oil, because of higher levels of Isomenthone, Piperitenone and Citronellic acid. Strongest antimicrobial activity against S. aureus, E. coli and C. albicans was observed from 10 min fraction. Conclusion: Our results indicated that distillation time can create essential oils with specific properties and we can achieve to more efficient essential oil in short times.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1081
Author(s):  
Matilda Rădulescu ◽  
Călin Jianu ◽  
Alexandra Teodora Lukinich-Gruia ◽  
Marius Mioc ◽  
Alexandra Mioc ◽  
...  

The investigation aimed to study the in vitro and in silico antioxidant properties of Melissa officinalis subsp. officinalis essential oil (MOEO). The chemical composition of MOEO was determined using GC–MS analysis. Among 36 compounds identified in MOEO, the main were beta-cubebene (27.66%), beta-caryophyllene (27.41%), alpha-cadinene (4.72%), caryophyllene oxide (4.09%), and alpha-cadinol (4.07%), respectively. In vitro antioxidant properties of MOEO have been studied in 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging, and inhibition of β-carotene bleaching assays. The half-maximal inhibitory concentration (IC50) for the radical scavenging abilities of ABTS and DPPH were 1.225 ± 0.011 μg/mL and 14.015 ± 0.027 μg/mL, respectively, demonstrating good antioxidant activity. Moreover, MOEO exhibited a strong inhibitory effect (94.031 ± 0.082%) in the β-carotene bleaching assay by neutralizing hydroperoxides, responsible for the oxidation of highly unsaturated β-carotene. Furthermore, molecular docking showed that the MOEO components could exert an in vitro antioxidant activity through xanthine oxidoreductase inhibition. The most active structures are minor MOEO components (approximately 6%), among which the highest affinity for the target protein belongs to carvacrol.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2888
Author(s):  
Carmen M. S. Ambrosio ◽  
Gloria L. Diaz-Arenas ◽  
Leidy P. A. Agudelo ◽  
Elena Stashenko ◽  
Carmen J. Contreras-Castillo ◽  
...  

Essential oils (EOs) from Citrus are the main by-product of Citrus-processing industries. In addition to food/beverage and cosmetic applications, citrus EOs could also potentially be used as an alternative to antibiotics in food-producing animals. A commercial citrus EO—Brazilian Orange Terpenes (BOT)—was fractionated by vacuum fractional distillation to separate BOT into various fractions: F1, F2, F3, and F4. Next, the chemical composition and biological activities of BOT and its fractions were characterized. Results showed the three first fractions had a high relative amount of limonene (≥10.86), even higher than the whole BOT. Conversely, F4 presented a larger relative amount of BOT’s minor compounds (carvone, cis-carveol, trans-carveol, cis-p-Mentha-2,8-dien-1-ol, and trans-p-Mentha-2,8-dien-1-ol) and a very low relative amount of limonene (0.08–0.13). Antibacterial activity results showed F4 was the only fraction exhibiting this activity, which was selective and higher activity on a pathogenic bacterium (E. coli) than on a beneficial bacterium (Lactobacillus sp.). However, F4 activity was lower than BOT. Similarly, F4 displayed the highest antioxidant activity among fractions (equivalent to BOT). These results indicated that probably those minor compounds that detected in F4 would be more involved in conferring the biological activities for this fraction and consequently for the whole BOT, instead of the major compound, limonene, playing this role exclusively.


Sign in / Sign up

Export Citation Format

Share Document