scholarly journals Evaluation of antioxidant and anti-cancer properties of curcumin / beta- and gamma-cyclodextrin complexes modified with chitosan nanoparticles on lung cancer cell A549

2021 ◽  
Vol 8 (2) ◽  
pp. 84-94
Author(s):  
Nina Alizadeh ◽  
Shokufeh Malakzadeh ◽  
◽  
2020 ◽  
Vol Volume 12 ◽  
pp. 3579-3587
Author(s):  
Haoyue Hu ◽  
Yanyang Liu ◽  
Songtao Tan ◽  
Xiao Xiao Xie ◽  
Jun He ◽  
...  

2004 ◽  
Vol 22 (14_suppl) ◽  
pp. 7289-7289
Author(s):  
C. D. MacDonald ◽  
L. M. Pickering ◽  
J. L. Mansi ◽  
K. W. Colston

2004 ◽  
Vol 22 (14_suppl) ◽  
pp. 7289-7289
Author(s):  
C. D. MacDonald ◽  
L. M. Pickering ◽  
J. L. Mansi ◽  
K. W. Colston

2021 ◽  
Vol 33 (4) ◽  
pp. 775-780
Author(s):  
Preeyanuch Manohong ◽  
Nilubon Sornkaew ◽  
Krai Meemon ◽  
Kawita Chumphoochai ◽  
Prasert Sobhon ◽  
...  

This study aimed to evaluate the bioactivity and phytochemical investigation in red algae Halymenia durvillei. The polarity based solvent partition (hexane, ethyl acetate, butanol and water) of H. durvillei ethanolic crude were used for characterization. The present results of the ethyl acetate extract of red alga H. durvillei generated a 3-(hydroxyacetyl)indole (1), indole-3-carboxylic acid (2) as well as two fatty acids viz. palmitic acid (3) and α-linoleic acid (4). The viability against lung cancer cells of compounds 1 and 2 showed moderate activities against the A549 cell line with inhibition percentages of 12.97% and 25.81%, respectively. Analysis of the dose response of C. elegans anti-aging assay indicated that the survival rate of compound 1 was 12.62% while it was 11.04% for compound 2. Furthermore, H. durvillei isolation was used as an antioxidant, anti-cancer cell and anti-aging resource.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1147
Author(s):  
Yugyung Jung ◽  
Minkook Son ◽  
Yu Ri Nam ◽  
Jongchan Choi ◽  
James R. Heath ◽  
...  

Cancer is a dynamic disease involving constant changes. With these changes, cancer cells become heterogeneous, resulting in varying sensitivity to chemotherapy. The heterogeneity of cancer cells plays a key role in chemotherapy resistance and cancer recurrence. Therefore, for effective treatment, cancer cells need to be analyzed at the single-cell level by monitoring various proteins and investigating their heterogeneity. We propose a microfluidic chip for a single-cell proteomics assay that is capable of analyzing complex cellular signaling systems to reveal the heterogeneity of cancer cells. The single-cell assay chip comprises (i) microchambers (n = 1376) for manipulating single cancer cells, (ii) micropumps for rapid single-cell lysis, and (iii) barcode immunosensors for detecting nine different secretory and intracellular proteins to reveal the correlation among cancer-related proteins. Using this chip, the single-cell proteomics of a lung cancer cell line, which may be easily masked in bulk analysis, were evaluated. By comparing changes in the level of protein secretion and heterogeneity in response to combinations of four anti-cancer drugs, this study suggests a new method for selecting the best combination of anti-cancer drugs. Subsequent preclinical and clinical trials should enable this platform to become applicable for patient-customized therapies.


2017 ◽  
Author(s):  
◽  
S'busiso Mfan'vele Nkosi

Quinoline and its derivatives represent an important class of nitrogen-containing heterocylces as they are useful intermediates in organic synthesis and possess a broad spectrum of biological activities, such as anti-asthmatic, anti-inflammatory and anti-malarial activity. Hence, synthesis of novel compounds with potent biological activities is important in medicine. Significant research is directed into the development of new quinoline based structures and new methods for their preparations. In the past, synthesis of complex molecules was accomplished by step-wise reaction. This was time consuming and yield was generally low. Nowadays, multi-component reactions (MCRs) are being used since three or more substrates can be reacted in a one-pot reaction. Therefore yields are higher and the reaction is more efficient. In this research investigation novel quinoline derivatives, using the multi-component reaction protocol, were synthesized. After characterization of the product by several spectroscopic techniques, the biological potential of these compounds were assessed using lung cancer cell lines, bacteria and molecular modeling in an enzymatic system. In the synthetic part of this study, the first step was the preparation of the starting compound 2- chloro-3-formyl quinoline for which the Vilsmeier-Haack cyclisation protocol was used. The cyclisation was carried out by combining DMF and POCl3 at 5°C to form an electrophile which then reacted in situ with N-phenylacetamide at 100ºC to afford 2-chloro-3-formyl quinoline in high yield (95%). This was followed by the synthesis of a series of novel quinoline derivatives in a MCR system comprising 2- chloro-3-formyl quinoline, malononitrile, aromatic amines and dimethyl acetylenedicarboxylate in the presence of a catalytic amount of triethylamine. Valuable features of this routine included high yields, extensive substrate range and straight forward procedures. Eight novel poly-functionalised dihydropyridine quinoline derivatives were synthesized, purified and characterized. The outline for the synthesis of poly-functionalised dihydropyridine quinoline derivatives is presented graphically in Scheme 1. Scheme 2 shows the eight compounds synthesized and used subsequently for further studies. Step 1 CH3 a N O H CHO N Cl Step 2 CHO CN N Cl CN NH2 R O OCH3 b OCH3 O MeO2C MeO2C N Cl CN N NH2 R = m-CH3, o-OCH3, p-Cl, m,p-Cl, o-F, m-F, p-F R Reaction Conditions: a. DMF, POCl3 b. Et3N, EtOH Scheme 1: Graphical representation for the synthesis of poly-functionalised dihydropyridine quinoline derivatives The novel eight compounds were screened for their potential activity in lung cancer cell lines. A549 cells were incubated for 24 hours with a range of concentrations of each compound, in triplicate, in a micro-titre plate together with an untreated control. Each experiment was conducted twice on separate occasions; the results from the first set matched the repeated experiment. The cells were then incubated (37ºC, 5% CO2) with the MTT substrate for 4 hours. Thereafter all supernatants were aspirated and DMSO was added to the wells. Finally the optical density was measured at 570 nm at a reference wavelength of 690 nm with an ELISA plate reader. The net MTT dependant absorbance (optical density) of each sample was calculated by subtracting the average absorbance of the blank from the average absorbance of each sample. Data were represented as mean optical density plus or minus the standard deviation. Four of the synthesized compounds (A1-A8) were evaluated for their cytotoxicity activities. The anti-cancer assay indicated that poly-functionalised dihydropyridine quinoline compounds, A2, A3 and A4 have good potential as anti-cancer drugs. Among them, A2 and A4 proved to be dose dependent with A4 having the highest toxicity at 250 µM and A8 having the highest toxicity at 125, 250 and 500 µM, whereas A1, A5, A6 and A7 were not cytotoxic. O H3CO H3CO O N Cl CN NH2 O H3CO H3CO O N Cl CN N NH2 OCH3 O H3CO H3CO O N Cl CN N NH2 O H3CO H3CO O N Cl CN NH2 CH3 Cl A1 A2 A3 A4 O H3CO H3CO O N Cl CN N NH2 F O H3CO H3CO O N Cl CN N NH2 O H3CO H3CO O N Cl CN NH2 O H3CO H3CO O N Cl CN N NH2 F Cl F Cl A5 A6 A7 A8 Scheme 2: Structures of novel poly-functionalised dihydropyridine quinoline derivatives by MCRs Since molecular docking is a key tool in structural molecular biology and computer-assisted drug design, these compounds were subjected to molecular docking and the binding mode for the compounds, within the active site of the protein, was analyzed. Docking of A1 to Human mdm2 protein provided insights into the binding regions. Three hydrogen bonds were formed between GLU 25 (2.7 Å distance), LEU 27 (3.2 Å distance) and LEU 54 (3.2 Å distance) atoms with binding energy of -8.91 kcal/mol. Docking of A1 with Human mdm2 indicated the lowest binding energy thereby showing strong affinity of the ligand molecule with the receptor which has been stabilized by strong hydrogen bond interactions in the binding pocket. This confirms that A1 is a better inhibitor for E3 ubiquitin-protein ligase mdm2 than all the other compounds tested (A2-A8). Further, the eight novel poly-functionalised dihydropyridine quinoline derivatives were evaluated for their antibacterial activity. This was performed using the MABA method against three strains i.e. Gram negative; Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922) and Gram positive; Staphylococcus aureus (ATCC 29213) using the broth micro dilution method. Standard antibiotics (ciprofloxacin and nalidixic acid) were used as positive controls and DMSO was used as a negative control. The results obtained from the anti-bacterial assay showed that compounds A4, A7 and A8 have high activity, whereas A2 and A3 showed poor activity against all the tested bacterial strains. Compound A6 showed no activity against S. aureus and E. coli.


Sign in / Sign up

Export Citation Format

Share Document