Interaction of Nitroglycerin with Bovine Serum Albumin and the Influence of Metal Ions on the Binding

2020 ◽  
Vol 42 (2) ◽  
pp. 180-180
Author(s):  
Chengman Bao Chengman Bao ◽  
Jialian Wang Jialian Wang ◽  
Xuehong Tong Xuehong Tong ◽  
Chunli Zhang Chunli Zhang ◽  
Xinhui Tang Xinhui Tang

The effect of Cu2+, Ca2+, Mg2+and Zn2+ on the interaction between nitroglycerin and bovine serum albumin was investigated. The bimolecular quenching rate constant, the Stern-Volmer quenching constant, the binding constants and the number of binding sites were calculated in the absence and presence of Cu2+, Ca2+, Mg2+and Zn2+. The quenching constants of nitroglycerin to bovine serum albumin were increased in the presence of metal ions. Static quenching mechanism was also confirmed. The binding constants of nitroglycerin to bovine serum albumin were influenced by different metal ions. The enthalpy change, free energy chang, entropy change and the distance between the donor and the acceptor at different temperatures were calculated. The results indicated that energy transfer from bovine serum albumin to nitroglycerin occurs with high probability.

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
K. Grigoryan ◽  
H. Shilajyan

The interaction of iodine with bovine serum albumin (BSA) in dimethylsulfoxide (DMSO) aqueous solutions was studied by means of fluorescence and UV/Vis absorption spectroscopy methods. Physicochemical peculiarities of these solutions were revealed. The results showed that the tri-iodide ion formed in the 1DMSO : 2H2O solution caused the fluorescence quenching of BSA. The modified Stern-Volmer quenching constant and corresponding thermodynamic parameters, the free energy change (), enthalpy change (), and entropy change (), at different temperatures (293, 298, and 303 K) were calculated, which indicated that the hydrophobic and electrostatic interactions were the predominant operating forces. The binding locality distance r between BSA and tri-iodide ion at different temperatures was determined based on Förster nonradiation fluorescence energy transfer theory.


2008 ◽  
Vol 22 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Changyun Chen ◽  
Meihua Ma ◽  
Junqi Zhang ◽  
Lichen Wang ◽  
Bingren Xiang

This study employs fluorescence spectroscopy to characterize the binding properties of a newly synthesized cardiac agent, V-09, on bovine serum albumin (BSA). This compound shows the highest cardiac activity in the whole series. The binding constantsKat 25°C and 37°C are obtained, the values are 7.12×104l mol–1, 4.66×104l mol–1, respectively. The standard enthalpy change (ΔH0) and the standard entropy change (ΔS0) are calculated to be –27.13 KJ mol–1and 1.854 J mol–1K–1, which indicated that hydrophobic forces play major role in the interaction between V-09 and BSA. The binding average distance between V-09 and BSA (2.57 nm) is obtained on the basis of the theory of Főrster energy transfer.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Baosheng Liu ◽  
Chao Yang ◽  
Xiaona Yan ◽  
Jing Wang ◽  
Yunkai Lv

The interaction between Avelox and bovine serum albumin (BSA) was investigated at different temperatures by fluorescence spectroscopy. Results showed that Avelox could quench the intrinsic fluorescence of BSA strongly, and the quenching mechanism was a static quenching process with Förester spectroscopy energy transfer. The electrostatic force played an important role on the conjugation reaction between BSA and Avelox. The order of magnitude of binding constants (Ka) was 104, and the number of binding site (n) in the binary system was approximately equal to 1. The binding distance (r) was less than 3 nm and the primary binding site for Avelox was located in subdomain IIA of BSA. Synchronous fluorescence spectra clearly revealed that the microenvironment of amino acid residues and the conformation of BSA were changed during the binding reaction. In addition, the effect of some antibiotics on the binding constant of Avelox with BSA was also studied.


2020 ◽  
Vol 54 (2 (252)) ◽  
pp. 99-104
Author(s):  
K.R. Grigoryan ◽  
H.A. Shilajyan ◽  
V.A. Hovhannisyan

Bovine serum albumin (BSA) interaction with tannic acid (TA) has been studied in dimethylsulfoxide (DMSO) aqueous solutions at different temperatures (293 and 303 K). To find out the fluorescence quenching mechanism of BSA in the presence of TA, the fluorescence data were analyzed according to the modified Stern-Volmer equation based on the approach of the existence of a “sphere of action” (a type of apparent static quenching). The values of apparent static and bimolecular quenching constants were calculated. The effect of DMSO and temperature on BSA–TA interactions is explained on the basis of structural changes in the “sphere of action” of the fluorophore due to the possible inclusion of DMSO molecules in this sphere.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 298
Author(s):  
Shufang Liu ◽  
Shu’e Wang ◽  
Zhanzuo Liu

The morphology of nanomaterials may affect their interaction with biomacromolecules such as proteins. Previous work has studied the size-dependent binding of pristine nC60 to bovine/human serum albumin using the fluorometric method and found that the fluorescence inner filter effect might affect this interaction. However, if it is necessary to accurately calculate and obtain binding information, the fluorescence inner filter effect should not be ignored. This work aimed to further investigate the effect of the fluorescence inner filter on the interaction between pristine nC60 with different particle sizes (140–160, 120–140, 90–110, 50–70, and 30–50 nm) and bovine serum albumin for a more accurate comprehension of the binding of pristine nC60 to bovine serum albumin. The nC60 nanoparticles with different size distributions used in the experiments were obtained by the solvent displacement and centrifugation method. UV-Vis spectroscopy and fluorescence spectroscopy were used to study the binding of nC60 with different size distributions to bovine serum albumin (BSA) before and after eliminating the fluorescence inner filter effect. The results showed that the fluorescence inner filter effect had an influence on the interaction between nC60 and proteins to some extent, and still did not change the rule of the size-dependent binding of nC60 nanoparticles to BSA. Further studies on the binding parameters (binding constants and the number of binding sites) between them were performed, and the effect of the binding on BSA structures and conformation were also speculated.


2009 ◽  
Vol 103 (12) ◽  
pp. 1729-1738 ◽  
Author(s):  
Giovanna Navarra ◽  
Anna Tinti ◽  
Maurizio Leone ◽  
Valeria Militello ◽  
Armida Torreggiani

Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 90 ◽  
Author(s):  
Paula Ossowicz ◽  
Proletina Kardaleva ◽  
Maya Guncheva ◽  
Joanna Klebeko ◽  
Ewelina Świątek ◽  
...  

The development of ionic liquids based on active pharmaceutical ingredients (API-ILs) is a possible solution to some of the problems of solid and/or hydrophobic drugs such as low solubility and bioavailability, polymorphism and an alternative route of administration could be suggested as compared to the classical drug. Here, we report for the first time the synthesis and detailed characterization of a series of ILs containing a cation amino acid esters and anion ketoprofen (KETO-ILs). The affinity and the binding mode of the KETO-ILs to bovine serum albumin (BSA) were assessed using fluorescence spectroscopy. All compounds bind in a distance not longer than 6.14 nm to the BSA fluorophores. The estimated binding constants (KA) are in order of 105 L mol−1, which is indicative of strong drug or IL-BSA interactions. With respect to the ketoprofen-BSA system, a stronger affinity of the ILs containing l-LeuOEt, l-ValOBu, and l-ValOEt cation towards BSA is clearly seen. Fourier transformed infrared spectroscopy experiments have shown that all studied compounds induced a rearrangement of the protein molecule upon binding, which is consistent with the suggested static mechanism of BSA fluorescence quenching and formation of complexes between BSA and the drugs. All tested compounds were safe for macrophages.


Sign in / Sign up

Export Citation Format

Share Document