scholarly journals MITIGATING ALUMINUM TOXICITY IN SEEDLINGS OF GLYCYRRHIZA GLABRA L. USING SILICON

2021 ◽  
Vol 18 (37) ◽  
pp. 33-47
Author(s):  
Mojtaba YAZDANI ◽  
Sara SAADATMAND ◽  
Shekoofeh ENTESHARI ◽  
Saeed HABIBOLAHI

Background: Silicon is a beneficial element for the plant, with the primary role in increasing plant resistance to heavy metals' toxicity and considering the importance of phytoremediation to remove heavy metals from contaminated soils. It could be used for the exogenous application for alleviating the harmful effects of heavy metals on the plant. Aim: This study aimed to investigate the role of Silicon in balancing the destructive effects of aluminum on Glycyrrhiza glabra L. Methods: the seedlings were grown under a hydroponic system using Long Ashton nutrient solution; the 15-day-old seedlings were exposed to Silicon (0, 0.5, 1.5 mM) for 110 days and afterward stressed by interactions of aluminum chloride (AlCl3.6H2O; 0, 100, 250, and 400 M). Result and Discussion: the interactive effects of Silicon significantly ameliorated the negative consequences of aluminum toxicity. The combination of Si 1.5 mM and Al 400 ?M produced the highest biomass in shoots (45.67 g). The simple effect of Si 1.5 mM (12.14 g) made the highest shoot dry weight. On the other hand, the highest quantity of root fresh and dry weight (12.52 and 3.22 g, respectively) was observed in Si 1.5 mM. Among the treatments, Si 0.5 mM + Al 100 ?M had the most stem height (38 cm) among interaction treatments. Similarly, photosynthetic pigments affected by Silicon, Al 250 ?M + Si 1.5 mM had the highest content of chlorophyll a (1.91 ?g/g FW), while Al 400 + 1.5 mM indicated the most increase in chlorophyll b (0.78 ?g/g FW) among interaction effects. This treatment by producing 0.663 ?g/g FW yielded the highest carotenoid content. The highest proline content in shoots and roots (69.54 and 81.46 ?g/g FW, respectively) were observed in the interaction of Al 400 ?M and Si 1.5 mM. Additionally, this treatment was observed to have the highest concentration of catalase (1.22 U/mg protein). The lowest malondialdehyde content was marked in Si 1.5 mM + Al 100 ?M (0.702 nM/g FW). Conclusion: overall, Glycyrrhiza Glabra L. seems to have high Al phytoremediation potential that can be enhanced with the exogenous application of a moderate Silicon level.

2021 ◽  
Vol 17 (37) ◽  
pp. 33-47
Author(s):  
Mojtaba YAZDANI ◽  
Sara SAADATMAND ◽  
Shekoofeh ENTESHARI ◽  
Saeed HABIBOLAHI

Background: Silicon is a beneficial element for the plant, with the primary role in increasing plant resistance to heavy metals' toxicity and considering the importance of phytoremediation to remove heavy metals from contaminated soils. It could be used for the exogenous application for alleviating the harmful effects of heavy metals on the plant. Aim: This study aimed to investigate the role of Silicon in balancing the destructive effects of aluminum on Glycyrrhiza glabra L. Methods: the seedlings were grown under a hydroponic system using Long Ashton nutrient solution; the 15-day-old seedlings were exposed to Silicon (0, 0.5, 1.5 mM) for 110 days and afterward stressed by interactions of aluminum chloride (AlCl3.6H2O; 0, 100, 250, and 400 M). Result and Discussion: the interactive effects of Silicon significantly ameliorated the negative consequences of aluminum toxicity. The combination of Si 1.5 mM and Al 400 ?M produced the highest biomass in shoots (45.67 g). The simple effect of Si 1.5 mM (12.14 g) made the highest shoot dry weight. On the other hand, the highest quantity of root fresh and dry weight (12.52 and 3.22 g, respectively) was observed in Si 1.5 mM. Among the treatments, Si 0.5 mM + Al 100 ?M had the most stem height (38 cm) among interaction treatments. Similarly, photosynthetic pigments affected by Silicon, Al 250 ?M + Si 1.5 mM had the highest content of chlorophyll a (1.91 ?g/g FW), while Al 400 + 1.5 mM indicated the most increase in chlorophyll b (0.78 ?g/g FW) among interaction effects. This treatment by producing 0.663 ?g/g FW yielded the highest carotenoid content. The highest proline content in shoots and roots (69.54 and 81.46 ?g/g FW, respectively) were observed in the interaction of Al 400 ?M and Si 1.5 mM. Additionally, this treatment was observed to have the highest concentration of catalase (1.22 U/mg protein). The lowest malondialdehyde content was marked in Si 1.5 mM + Al 100 ?M (0.702 nM/g FW). Conclusion: overall, Glycyrrhiza Glabra L. seems to have high Al phytoremediation potential that can be enhanced with the exogenous application of a moderate Silicon level.


2021 ◽  
Vol 29 (2) ◽  
pp. 88-93
Author(s):  
О. A. Havryliuk ◽  
V. M. Hovorukha ◽  
A. V. Sachko ◽  
G. V. Gladka ◽  
I. O. Bida ◽  
...  

Contamination of soils with heavy metals leads to reduction of soil fertility, destruction of natural ecosystems and detrimental effects on the health of society by increasing content of metals in the food chains from microorganisms to plants, animals and humans. Bioremediation is one of the most promising and cost-effective methods of cleaning soils polluted with toxic metals. According to current researchers, microorganisms and plants have the genetic potential to remove toxic metals from contaminated sites. The method of thermodynamic prediction was used to theoretically substantiate the mechanisms of interaction of soil microorganisms and plants with heavy metals. According to the our prediction, exometabolite chelators of anaerobic microorganisms may increase the mobility of metals and thereby contribute to the active transport of metals and their accumulation in plants. Plants of Nicotiana tabacum L. of Djubek cultivar were used as plant material for the current investigation. The examined toxicants were heavy metals, namely cobalt (II), nickel (II), chromium (VI), copper (II) and cadmium (II). The aqueous solutions of metal salts were added to the boxes after two months of plants growing to the final super-high concentration – 500 mg/kg of absolutely dry weight of soil. Quantitative assessments of copper and chromium-resistant microorganisms were made by cultivation on agar nutrient medium NA with a gradient of Cu(II) and Cr(VI). The concentration of metals in soil and plant material (leaves, stems and roots) was determined by atomic absorption method. The study revealed that heavy metals inhibited the growth of the examined tobacco plants. This was expressed by the necrosis of plant tissues and, ultimately, their complete death. Despite this, all investigated heavy metals were accumulated in plant tissues during 3–7 days before death of plants. The uptake of metals was observed in all parts of plants – leaves, stems and roots. The highest concentrations of Co(II), Ni(II), Cd(II), Cr(VI) were found in the leaves, Cu(II) – in the roots. The results show that the bioremoval efficiency of the investigated metals ranged 0.60–3.65%. Given the super-high initial concentration of each of the metals (500 mg/kg), the determined removal efficiency was also high. Cadmium was the most toxic to plants. Thus, the basic points of the thermodynamic prognosis of the possibility of accumulation of heavy metals by phytomicrobial consortium were experimentally confirmed on the example of N. tabacum plants and metal-resistant microorganisms. The study demonstrated that despite the high initial metals concentration, rate of damage and death of plants, metals are accumulated inplant tissues in extremely hight concentrations. Soil microorganisms were observed to have high adaptation potencial to Cu(II) and Cr(VI). In anaerobic conditions, microorganisms presumably mobilize heavy metals, which later are absorbed by plants. The obtained results are the basis for the development of environmental biotechnologies for cleaning contaminated soils from heavy metal compounds.


1970 ◽  
Vol 44 (4) ◽  
pp. 479-484 ◽  
Author(s):  
AS Chamon ◽  
MN Mondol ◽  
SM Ullah

Pot experiments with soil from two heavy metals contaminated sites were conducted. The objective of the experiment was to test red mud as an inorganic soil amendment to reduce heavy metal uptake and to alleviate toxicity in tomato (variety- Ratan) and wheat (variety- Agrani) crops. Iron (Fe) oxides contained in red mud, a byproduct of the aluminum industry, reduced soil to plant transfer of zinc (Zn), nickel (Ni), cadmium (Cd), and chromium (Cr). In Hazaribagh soil, tomato fruit yield (dry weight) increased by 72%. Shoot length and biomass production were positively influenced by red mud containing high amounts of Fe2O3. Heavy metal uptake into tomato plants was significantly ameliorated in both soil. On Tejgaon soil the effect of red mud on wheat grain yield production was not significantly different but the ameliorative effect of red mud application was clearly observed in the wheat grain samples for Tejgaon soil. Key words: Red Mud; Wheat; Tomato; Remediation; Heavy metals DOI: 10.3329/bjsir.v44i4.4602 Bangladesh J. Sci. Ind. Res. 44(4), 479-484, 2009


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3360
Author(s):  
Mahrous Awad ◽  
M. A. El-Desoky ◽  
A. Ghallab ◽  
Jan Kubes ◽  
S. E. Abdel-Mawly ◽  
...  

Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when grown at heavy metal contaminated soils. Site-specific detailed information is not available on the use of A. tricolor plant in metal phytoremediation from the polluted sites. The study aimed to enhance the uptake of HMs (Pb, Zn, and Cu) via amending poultry litter extract (PLE), vinasse sugarcane (VSC), and humic acid (HA) as natural mobilized organic materials compared to ethylene diamine tetraacetic acid (EDTA), as a common mobilized chemical agent by A. tricolor plant. The studied soils collected from Helwan, El-Gabal El-Asfar (Cairo Governorate), Arab El-Madabeg (Assiut Governorate), Egypt, and study have been conducted under pot condition. Our results revealed all organic materials in all studied soils, except EDTA in EL-Gabal El-Asfar soil, significantly increased the dry weight of the A. tricolor plant compared to the control treatment. The uptake of Pb and Zn significantly (p > 0.05) increased due to applying all organic materials to the studied soils. HA application caused the highest uptake as shown in Pb concentration by more than 5 times in Helwan soil and EDTA by 65% in El-Gabal El-Asfar soil while VSC increased it by 110% in El-Madabeg soil. Also, an increase in Zn concentration due to EDTA application was 58, 42, and 56% for Helwan, El-Gabal El-Asfar, and El-Madabeg soil, respectively. In all studied soils, the application of organic materials increased the remediation factor (RF) than the control. El-Madabeg soil treated with vinasse sugarcane gave the highest RF values; 6.40, 3.26, and 4.02% for Pb, Zn, and Cu, respectively, than the control. Thus, we identified A. tricolor as a successful ornamental candidate that, along with organic mobilization amendments, most efficiently develop soil health, reduce metal toxicity, and recommend remediation of heavy metal-contaminated soils. Additionally, long-term application of organic mobilization amendments and continued growth of A. tricolor under field conditions could be recommended for future directions to confirm the results.


Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
LL Gauthier ◽  
C Simmler ◽  
DS Nikolic ◽  
R Van Breemen ◽  
SN Chen ◽  
...  

2020 ◽  
Vol 25 (2) ◽  
pp. 61-71
Author(s):  
Rajendra Gyawali ◽  
Rupesh Kumar Gupta ◽  
Sahana Shrestha ◽  
Rajendra Joshi ◽  
Prem Narayan Paudel

Alcoholic extracts of medicinal plants Cinnamomum zeylanicum Blume, Glycyrrhiza glabra L, and Azadirachta indica A. Juss were subjected to the evaluation of antioxidant properties and combined for the cream formulation. The antioxidant property was determined by using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay and inhibition of lipid peroxidase assays. The cream formulation was designed using Minitab software and a central composite design was used to study the effect of dependent variables, steric acid and cetyl alcohol on the response variables such as, viscosity, pH, and spreadability. The phytochemical screening of extracts showed the presence of tannin, phenol, flavonoids, saponins, and alkaloids. Antioxidant properties of the extracts and their relative composition were found variable. Composition F3 (C. zeylanicum Blume: G. glabra L: A. indica A. Juss; 01: 02: 01) possessed the highest antioxidant capacity compared to other ratios. The cream prepared from this composition was found stable for pH, viscosity as well as antioxidant activity under normal condition (25) and accelerated condition (40 ). The cream with DPPH scavenging activity of 93.86 % at 15 µg/mL (IC50 8.58±0.30) and lipid peroxidase assay 90.93 % at 200 µg/mL (IC50 72.30±0.60) with pH 5.50 was found with a non-Newtonian positive thixotropic flow property. Parameters like pH, viscosity, and spreadability of the cream were within the acceptance range, and found stable and permeable


2020 ◽  
Vol 57 (2) ◽  
pp. 109-114
Author(s):  
Amirhossein Dolatzadeh khiyavi ◽  
Reza Hajimohammadi ◽  
Hossein Amani ◽  
Hadi Soltani

Sign in / Sign up

Export Citation Format

Share Document