scholarly journals LINEARIZATION OF RELATIVE HUMIDITY OVER THE PACIFIC OCEAN ON THE EQUATORIAL LINE

2019 ◽  
Vol 16 (33) ◽  
pp. 630-640
Author(s):  
C. M. DÍEZ ◽  
C. J. SOLANO

The atmosphere system is ruled by the interaction of many meteorological parameters, causing a dependency between them, i.e., moisture and temperature, both suitable in front of any anomaly, such as storms, hurricanes, El Niño-Southern Oscillation (ENSO) events. So, understanding perturbations of the variation of moistness along the time may provide an indicator of any oceanographic phenomenon. Annual relative humidity data around the Equatorial line of the Pacific Ocean were processed and analyzed to comprehend the time evolution of each dataset, appreciate anomalies, trends, histograms, and propose a way to predict anomalous episodes such ENSO events, observing abnormality of lag correlation coefficients between every pair of buoys. Datasets were taken from the Tropical Atmosphere Ocean / Triangle Trans-Ocean Network (TAO/TRITON) project, array directed by Pacific Environmental Laboratory (PMEL) of the National Oceanic and Atmospheric Administration (NOAA), and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). All the datasets were processed, and the code was elaborated by the author or adapted from Mathworks Inc. Even occurrences of relative humidity in the east side of the Pacific Ocean seem to oscillate harmonically, while occurrences in the west side, do not, because of the size of their amplitudes of oscillations. This fact can be seen in the histograms that show Peak shapes in the east side of the ocean, and Gaussians in the west; lag correlation functions show that no one pair of buoys synchronize fluctuations, but western buoys are affected in front of ENSO events, especially between 1997-98. Definitely, lag correlations in western buoys are determined to detect ENSO events.

Author(s):  
Elizabeth Sinn

This chapter takes a broad look at the Pacific Ocean in relation to Chinese migration. As trade, consumption and capital flows followed migrants, powerful networks were woven and sustained; in time, the networks fanned across the Pacific from British Columbia along the West Coast of the United States to New Zealand and Australia. The overlapping personal, family, financial and commercial interests of Chinese in California and those in Hong Kong, which provide the focus of this study, energized the connections and kept the Pacific busy and dynamic while shaping the development of regions far beyond its shores. The ocean turned into a highway for Chinese seeking Gold Mountain, marking a new era in the history of South China, California, and the Pacific Ocean itself.


2020 ◽  
Author(s):  
Jian Rao ◽  
Chaim Garfinkel ◽  
Ian White ◽  
Chen Schwartz

<p>Using 17 CMIP5/6 models with a spontaneously-generated quasi-biennial oscillation (QBO)-like phenomenon, this study explores and evaluates three dynamical pathways for impacts of the QBO on the troposphere: (i) the Holtan-Tan (HT) effect on the stratospheric polar vortex and the northern annular mode (NAM), (ii) the subtropical zonal wind downward arching over the Pacific, and (iii) changes in local convection over the Maritime Continent and Indo-Pacific Ocean. More than half of the models can reproduce at least one of the three pathways, but few models can reproduce all of the three routes. Firstly, most models are able to simulate a weakened polar vortex during easterly QBO (EQBO) winters, in agreement with the observed HT effect. However, the weakened polar vortex response during EQBO winters is underestimated or not present at all in other models, and hence the QBO → vortex → tropospheric NAM/AO chain is not simulated. For the second pathway associated with the downward arching of the QBO winds, seven models incorrectly or poorly simulate the extratropical easterly anomaly center over 20–40°N in the Pacific sector during EQBO, and hence the negative relative vorticity anomalies poleward of the easterly center is not resolved in those models, leading to an underestimated or incorrectly modelled height response over North Pacific. However the other ten do capture this effect. The third pathway is only observed in the Indo-Pacific Ocean, where the strong climatological deep convection and the warm pool are situated. Nine models can simulate the convection anomalies associated with the QBO over the Maritime Continent, which is likely caused by the near-tropopause low buoyancy frequency anomalies. No robust relationship between the QBO and El Niño–Southern Oscillation (ENSO) events can be established using the ERA-Interim reanalysis, and nine models consistently confirm little modulation of the ocean basin-wide Walker circulation and ENSO events by the QBO.</p>


2015 ◽  
Vol 84 (1) ◽  
pp. 1-18 ◽  
Author(s):  
David Igler

American culture has long associated the nineteenth-century U.S. frontier with episodes of violent death and random bloodshed. But what about the vast watery expanse west of the West? The Pacific Ocean contains its own violent past, especially during the period stretching from Captain James Cook's historic voyages to the California Gold Rush. The nature and degree of this violence stemmed not merely from contact relations between indigenous communities and newcomers, but more specifically from commercial desires, the diffusion of diseases, and the great hunt for marine mammals. Historicizing this violent past remains an imperative for new studies of the Pacific.


2021 ◽  
Vol 25 (3) ◽  
pp. 1467-1481
Author(s):  
Tao Gao ◽  
Fuqiang Cao ◽  
Li Dan ◽  
Ming Li ◽  
Xiang Gong ◽  
...  

Abstract. The spatiotemporal variability of rainfall in the dry (October–March) and wet (April–September) seasons over eastern China is examined from 1901–2016 based on the gridded rainfall dataset from the University of East Anglia Climatic Research Unit. Principal component analysis is employed to identify the dominant variability modes, wavelet coherence is utilized to investigate the spectral features of the leading modes of precipitation and their coherences with the large-scale modes of climate variability, and the Bayesian dynamical linear model is adopted to quantify the time-varying correlations between climate variability modes and rainfall in the dry and wet seasons. Results show that first and second principal components (PCs) account for 34.2 % (16.1 %) and 13.4 % (13.9 %) of the variance in the dry (wet) season, and their variations are roughly coincident with phase shifts of the El Niño–Southern Oscillation (ENSO) in both seasons. The anomalous moisture fluxes responsible for the occurrence of precipitation events in eastern China exhibit an asymmetry between high and light rainfall years in the dry (wet) season. The ENSO has a 4- to 8-year signal of the statistically positive (negative) association with rainfall during the dry (wet) season over eastern China. The statistically significant positive (negative) associations between the Pacific Decadal Oscillation (PDO) and precipitation are found with a 9- to 15-year (4- to 7-year) signal. The impacts of the PDO on rainfall in eastern China exhibit multiple timescales as compared to the ENSO episodes, while the PDO triggers a stronger effect on precipitation in the wet season than the dry half year. The interannual and interdecadal variations in rainfall over eastern China are substantially modulated by drivers originated from the Pacific Ocean. During the wet season, the ENSO exerted a gradually weakening effect on eastern China rainfall from 1901 to 2016, while the effects of the PDO decreased before the 1980s, and then shifted into increases after the 2000s. The finding provides a metric for assessing the capability of climate models and guidance of seasonal prediction.


Author(s):  
Cynthia Rosenzweig ◽  
Daniel Hillel

Perturbations of the climate system caused by El Niño and La Niña events affect natural and managed systems in vast areas of the Pacific Ocean and far beyond it. (Other oscillations affect systems and sectors in wide swaths of the world as well.)1 El Niño–Southern Oscillation (ENSO) events have been associated with ecosystem disruptions and forest fires, crop failures and famines, disease epidemics, and even market fluctuations in various regions. The forms and degrees of impact depend not only on the strength and duration of an El Niño or La Niña event and its associated teleconnections, but also on the state, sensitivity, and vulnerability of the affected system and its biotic community, as well as its human population. The underlying characteristics of ecosystems and human societies in each region are important factors in their susceptibility to ENSO-related damages. Variation may be enhanced as ENSO effects ripple through natural and managed ecosystems. The underlying health of the affected biota, interrelationships among different biotic associations, and pressure by humans all affect marine as well as terrestrial ecosystem responses to ENSO events. Impacts on human systems can be both direct and indirect. Some ENSO phenomena, such as severe storms, affect human lives and infrastructures directly. Other impacts occur through alterations in the marine and terrestrial ecosystems and water supplies upon which human populations ultimately depend. In this chapter we consider some of the impacts that ENSO and other oscillations (described with their teleconnections in chapter 1) have on marine and terrestrial ecosystems and on human-managed systems apart from agriculture. The significant and geographically widespread changes that El Niño events induce in the Pacific Ocean alter conditions for various marine communities. These alterations include dramatic changes in the abundance and distribution of organisms, associated collapses of commercial fisheries, and ensuing consequences affecting human livelihood (Glantz, 2004; Lehodey et al., 2006). Some of the effects are well documented. Reductions in primary production of up to 95% were measured in the eastern equatorial Pacific in 1982–83 (Barber and Chavez, 1983.) Large changes in ecosystem structure and productivity have also been recorded in other parts of the Pacific Ocean, including the western Pacific and in the North Pacific subtropical gyre (north of the Hawaiian Islands) (Karl et al., 1995).


1980 ◽  
Vol 7 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Kai Curry-Lindahl

This paper deals essentially with ecosystems, biomes, and habitats, of the Pacific realm, that are in need of restoration and conservation programmes for saving endangered vertebrates through the establishment of ‘ecological reserves’. Besides zoogeographic factors, the matter of conservation urgency is reflected in the criteria by taking into account the rate of vertebrate extinction in historic time and the number of vertebrate species and subspecies that are endangered or threatened with extinction in each area.In this paper and its successor (Part 2), twenty-two zoogeographic subregions have been defined in the Pacific realm, to which have been added three others—namely the Australian, North American, and South American coasts of the Pacific Ocean. Table I shows the division of these zoogeographic subregions within each faunal region. The Oceanian or ‘Central’ region is here introduced as a particular faunal region comprising Hawaii, Micronesia, Melanesia, and Polynesia. This complex of islands cannot, in the Author's opinion, be conveniently grouped with any of the continental faunal regions, although it has clear affinities with near-by continents to the west.


Sign in / Sign up

Export Citation Format

Share Document