scholarly journals EXPERIMENTAL STUDIES ON DEVELOPMENT OF THE METHOD FOR DETERMINING THE AMOUNT OF IMPURITATED GASES IN NUCLEAR FUEL

2022 ◽  
pp. 29-36
Author(s):  
G. A. Vityuk ◽  
V. A. Vityuk ◽  
A. D. Vurim ◽  
R. Y. Kelcingazina ◽  
B. Y. Bekmagambetova

The article is devoted to an issue of estimating the impurity gas amount in nuclear fuel in the aspect of the distracting contribution from released gases to the total pressure inside ampoule of the device in the simulating a severe accident with core melting. The paper presents a method based on measuring the pressure and temperature of gas in a closed values of the fuel elements during the fuel melting. The correctness of the developed methodology is confirmed by the results of experiments on the melting of fuel in a pulsed graphite reactor IGR with the implementation of a controlled neutron pulse.

2006 ◽  
Vol 13 (3) ◽  
pp. 419-425
Author(s):  
A. N. Cherepanov ◽  
V. N. Popov ◽  
A. E. Detsel ◽  
A. B. Aleksandrov ◽  
A. I. Drobyaz

Author(s):  
Christopher S. Bajwa ◽  
Earl P. Easton ◽  
Harold Adkins ◽  
Judith Cuta ◽  
Nicholas Klymyshyn ◽  
...  

In 2007, a severe transportation accident occurred near Oakland, California, at the interchange known as the “MacArthur Maze.” The accident involved a double tanker truck of gasoline overturning and bursting into flames. The subsequent fire reduced the strength of the supporting steel structure of an overhead interstate roadway causing the collapse of portions of that overpass onto the lower roadway in less than 20 minutes. The US Nuclear Regulatory Commission has analyzed what might have happened had a spent nuclear fuel transportation package been involved in this accident, to determine if there are any potential regulatory implications of this accident to the safe transport of spent nuclear fuel in the United States. This paper provides a summary of this effort, presents preliminary results and conclusions, and discusses future work related to the NRC’s analysis of the consequences of this type of severe accident.


2017 ◽  
Vol 105 (11) ◽  
Author(s):  
Thierry Wiss ◽  
Vincenzo V. Rondinella ◽  
Rudy J. M. Konings ◽  
Dragos Staicu ◽  
Dimitrios Papaioannou ◽  
...  

AbstractThe formation of the high burnup structure (HBS) is possibly the most significant example of the restructuring processes affecting commercial nuclear fuel in-pile. The HBS forms at the relatively cold outer rim of the fuel pellet, where the local burnup is 2–3 times higher than the average pellet burnup, under the combined effects of irradiation and thermo-mechanical conditions determined by the power regime and the fuel rod configuration. The main features of the transformation are the subdivision of the original fuel grains into new sub-micron grains, the relocation of the fission gas into newly formed intergranular pores, and the absence of large concentrations of extended defects in the fuel matrix inside the subdivided grains. The characterization of the newly formed structure and its impact on thermo-physical or mechanical properties is a key requirement to ensure that high burnup fuel operates within the safety margins. This paper presents a synthesis of the main findings from extensive studies performed at JRC-Karlsruhe during the last 25 years to determine properties and behaviour of the HBS. In particular, microstructural features, thermal transport, fission gas behaviour, and thermo-mechanical properties of the HBS will be discussed. The main conclusion of the experimental studies is that the HBS does not compromise the safety of nuclear fuel during normal operations.


Author(s):  
Jan Mihalyovics ◽  
Christian Brück ◽  
Dieter Peitsch ◽  
Ilias Vasilopoulos ◽  
Marcus Meyer

The objective of the presented work is to perform numerical and experimental studies on compressor stators. This paper presents the modification of a baseline stator design using numerical optimization resulting in a new 3D stator. The Rolls Royce in-house compressible flow solver HYDRA was employed to predict the 3D flow, solving the steady RANS equations with the Spalart-Allmaras turbulence model, and its corresponding discrete adjoint solver. The performance gradients with respect to the input design parameters were used to optimize the stator blade with respect to the total pressure loss over a prescribed incidence range, while additionally minimizing the flow deviation from the axial direction at the stator exit. Non-uniform profile boundary conditions, being derived from the experimental measurements, have been defined at the inlet of the CFD domain. The presented results show a remarkable decrease in the axial exit flow angle deviation and a minor decrease in the total pressure loss. Experiments were conducted on two compressor blade sets investigating the three-dimensional flow in an annular compressor stator cascade. Comparing the baseline flow of the 42° turning stator shows that the optimized stator design minimizes the secondary flow phenomena. The experimental investigation discusses the impact of steady flow conditions on each stator design while focusing on the comparison of the 3D optimized design to the baseline case. The flow conditions were investigated using five-hole probe pressure measurements in the wake of the blades. Furthermore, oil-flow visualization was applied to characterize flow phenomena. These experimental results are compared with the CFD calculations.


1983 ◽  
Vol 115 (2-3) ◽  
pp. 355-356
Author(s):  
Massoud T. Simnad
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document