Liquisolid Compacts Technique of Poor Water Soluble Drugs: An Overview

Author(s):  
E. Bhavya ◽  
M.D. Dhere

Liquisolid technique is new and promising method that can use to enhance the dissolution rate of poorly water soluble drugs. Liquisolid compact technique is based upon the dissolving the drug in a suitable non-volatile solvent by using carrier and coating material for the conversion of acceptable flowing and compressible powders. By applying the mathematical models the carrier and coating materials optimized. In this case the drug is almost solubilised in the solvent or molecularly dispersed state which contributes the enhanced drug dissolution.

2020 ◽  
Vol 17 ◽  
Author(s):  
Eduarda Rocha Bigogno ◽  
Luciano Soares ◽  
Matheus Henrique Ruela Mews ◽  
Melissa Zétola ◽  
Giovana Carolina Bazzo ◽  
...  

Background: Solid dispersions (SDs) have been extensively used to increase dissolution of poorly water-soluble drugs. However, there are few studies exploring SDs properties that must be considered during tablet development, like tabletability. Poorly water-soluble drugs with poor compression properties and high therapeutic doses, like gemfibrozil, are an additional challenge in the production of SDs-based tablets. Objective: This study evaluates the applicability of SDs to improve both tabletability and dissolution rate of gemfibrozil. A SD-based tablet formulation was also proposed. Method: SDs were prepared by ball milling, using hydroxypropyl methylcellulose (HPMC) as carrier, according to a 23 factorial design. The formulation variables were: gemfibrozil:HPMC ratio, milling speed, and milling time. The response in the factorial analysis was the tensile strength of the compacted SDs. Dissolution rate and solid-state characterization of SDs were also performed. Results: SDs showed simultaneous drug dissolution enhancement and improved tabletability when compared to corresponding physical mixtures and gemfibrozil. The main variable influencing drug dissolution and tabletability was the gemfibrozil:HPMC ratio. Tablets containing gemfibrozil-HPMC-SD (1:0.250 w/w) and croscarmellose sodium showed fast and complete drug release while those containing the same SD and sodium starch glycolate exhibited poor drug release due to their prolonged disintegration time. Conclusion: SDs proved to be effective for simultaneously improving tabletability and dissolution profile of gemfibrozil. Tablets containing gemfibrozil-HPMC-SD and croscarmellose sodium as disintegrating agent showed improved drug release and good mechanical strength, demonstrating the potential of HPMC-based SDs to simultaneously overcome the poor dissolution and tabletability properties of this drug.


2007 ◽  
Vol 57 (1) ◽  
pp. 99-109 ◽  
Author(s):  
Yousef Javadzadeh ◽  
Mohammad Siahi ◽  
Solmaz Asnaashari ◽  
Ali Nokhodchi

Liquisolid technique as a tool for enhancement of poorly water-soluble drugs and evaluation of their physicochemical properties The potential of liquisolid systems to improve the dissolution properties of a water-insoluble agent (indomethacin) was investigated. In this study, different formulations of liquisolid tablets using different co-solvents (non-volatile solvents) were prepared and the effect of aging on the dissolution behaviour of indomethacin liquisolid compacts was investigated. To evaluate any interaction between indomethacin and the other components in liquisolid formulations, X-ray powder diffraction (XPD) and differential scanning calorimetry (DSC) were used. Dissolution test was carried out at two different pH, 1.2 and 7.2, to simulate the stomach or intestine fluid, respectively. The results showed that liquisolid formulations exhibited significantly higher drug dissolution rates at pH 1.2 and 7.2 compared to compacts prepared by the direct compression technique. The enhanced rate of indomethacin dissolution from liquisolid tablets was probably due to an increase in wetting properties and surface area of drug particles available for dissolution. In order to investigate the effect of aging on the hardness and dissolution rate of liquisolid compacts, the formulations were stored at 25 °C/75% relative humidity for a period of 12 months. The results showed that aging had no significant effect on dissolution profiles of liquisolid tablets. Liquisolid compacts containing propylene glycol as vehicle produced higher dissolution rates in comparison with liquisolid compacts containing PEG 400 or Tween 80 of the same concentration. The DSC and XPD results showed no changes in crystallinity of the drug and interaction between indomethacin and excipients (Avicel and silica) during the process.


Author(s):  
Sadhna Khatry ◽  
Neha Sood ◽  
Sandeep Arora

Preparation of an effective formulation of poorly water-soluble drugs is a key challenge in pharmaceutical technology. Dissolution rate and solubility are the rate- limiting steps for increasing the bioavailability of poorly water‐soluble drugs. Solid dispersion is an efficient technique for improving dissolution rate and subsequently, the bioavailability of poorly water‐soluble drugs. Surface sSolid dDispersion is a novel technique of solid dispersion for dispersing one or more active ingredients on a water insoluble carrier of high surface area in order to achieve increased dissolution rates and bioavailability of insoluble drugs. The Vvarious polymers used in this technique are Avicel, Crosspovidone, sSodium starch glycolate, pPregelatinized starch, Cab-o-sil, Ac-di-sol, KyronT-314, Primojel and pPotato sStarch. This article reviews the various methods of preparation and characterization of surface solid dispersion and compiles some of the drugs formulated as surface solid dispersions. Some of the practical aspects to be considered for preparing surface solid dispersion are selection of a suitable carrier and method of preparation of surface solid dispersion.


2017 ◽  
Vol 9 (3) ◽  
pp. 8
Author(s):  
Satyajit Panda ◽  
R. Varaprasad ◽  
K. Priyanka ◽  
Ranjit P. Swain

The liquisolid technique is a novel approach for delivery of drugs through the oral route. This technique is suitable for poorly soluble or water insoluble drugs, highly permeable drugs (BCS Class II drugs) and also for immediate or sustained release formulations. It is a novel "Powder Solution Technology" that involves absorption and adsorption efficiencies, making use of liquid medications, drug suspensions admixed with suitable carriers, coating materials and formulated into free flowing, dry looking, non-adherent and compressible powder forms. The design of liquisolid systems are mainly intended for enhancement of solubility, dissolution rate and bioavailability of poorly water-soluble and highly lipophilic drugs. Improvement in bioavailability may be due to increased surface area, increased aqueous solubility and increased the wettability of the drug. Liquisolid technique also has the potential to be optimized for the reduction of drug dissolution rate and thereby production of sustained release systems. Overall, liquisolid technique is a most promising and novel technique for enhancing the dissolution and bioavailability of poorly water soluble drugs and sustaining drug release from tablet matrices. The current review mainly focuses on theory and applicability of liquisolid compact technique towards solubility or bioavailability enhancement. Different carriers, solvents and coating materials employed are elucidated. Literature reports on the applicability of liquisolid compact techniques over a wide range of pharmaceutical formulations are also explicated.


Author(s):  
Rajendra K. Surawase ◽  
Kamalkishor G. Baheti

Aim: The aim of this study was to study the solubility and dissolution kinetics of poorly water-soluble drugs simvastatin from its solid dispersion with different carriers by using fluidized bed processing technique. Methods: The effect of different surfactants such as Gelucire® 44/14, PVP- K30 and Poloxamer- 188 on solid dispersion dissolution and solubility of simvastatin was investigated. Solid dispersion is formed using various techniques with polymeric carrier to potentially enhance the solubility and dissolution rate such as fluidized bed processing, it will extend drug absorption, therefore the objectives were to make a comparative evaluation among different solid dispersions. Results: The simvastatin solid dispersion prepared by fluidized bed processing significantly enhanced in vitro dissolution and solubility relative to that of the unprocessed form. The dissolution profiles were correlated using various mathematical models such as Zero order, first order, Higuchi and Hixon Crowell model and the Zero order kinetics model gave better correlation results than the other models. Conclusion: Dissolution profile of simvastatin was significantly improved via complexation with Gelucire 44/14 as compared with the pure drug and other carriers using FBP processing is a highly effective strategy for enhancing the solubility and dissolution of poorly water-soluble drugs.


Sign in / Sign up

Export Citation Format

Share Document