scholarly journals Predictive Uncertainty in Neural Network-Based Financial Market Forecasting

Author(s):  
Iwao Maeda ◽  
Hiroyasu Matsushima ◽  
Hiroki Sakaji ◽  
Kiyoshi Izumi ◽  
David deGraw ◽  
...  
Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 823
Author(s):  
Tianle Zhou ◽  
Chaoyi Chu ◽  
Chaobin Xu ◽  
Weihao Liu ◽  
Hao Yu

In this study, a new idea is proposed to analyze the financial market and detect price fluctuations, by integrating the technology of PSR (phase space reconstruction) and SOM (self organizing maps) neural network algorithms. The prediction of price and index in the financial market has always been a challenging and significant subject in time-series studies, and the prediction accuracy or the sensitivity of timely warning price fluctuations plays an important role in improving returns and avoiding risks for investors. However, it is the high volatility and chaotic dynamics of financial time series that constitute the most significantly influential factors affecting the prediction effect. As a solution, the time series is first projected into a phase space by PSR, and the phase tracks are then sliced into several parts. SOM neural network is used to cluster the phase track parts and extract the linear components in each embedded dimension. After that, LSTM (long short-term memory) is used to test the results of clustering. When there are multiple linear components in the m-dimension phase point, the superposition of these linear components still remains the linear property, and they exhibit order and periodicity in phase space, thereby providing a possibility for time series prediction. In this study, the Dow Jones index, Nikkei index, China growth enterprise market index and Chinese gold price are tested to determine the validity of the model. To summarize, the model has proven itself able to mark the unpredictable time series area and evaluate the unpredictable risk by using 1-dimension time series data.


Author(s):  
Xinzhe Yin ◽  
Jinghua Li

Many experts and scholars at home and abroad have studied this topic in depth, laying a solid foundation for the research of financial market prediction. At present, the mainstream prediction method is to use neural network and autoregressive conditional heteroscedasticity to build models, which is a more scientific way, and also verified the feasibility of the way in many studies. In order to improve the accuracy of financial market trend prediction, this paper studies in detail the neural network system represented by BP and the autoregressive conditional heterogeneous variance model represented by GARCH. Analyze its structure and algorithm, combine the advantages of both, create a GARCH-BP model, and transform its combination structure and optimize the algorithm according to the uniqueness of the financial market, so as to meet the market as much as possible Characteristics. The novelty of this paper is the construction of the autoregressive conditional heteroscedasticity model, which lays the foundation for the prediction of financial market trends through the construction of the model. However, there are some shortcomings in this article. The overall overview of the financial market is not very clear, and the prediction of the BP network is not so comprehensive. Finally, through the actual data statistics of market transactions, the effectiveness of the GARCH-BP model was tested, analyzed and researched. The final results show that model has a good effect on the prediction and trend analysis of market, and its accuracy and availability greatly improved compared with the previous conventional approach, which is worth further study and extensive research It is believed that the financial market prediction model will become one of the mainstream tools in the industry after its later improvement.


2016 ◽  
pp. 761-788
Author(s):  
Partha Sarathi Mishra ◽  
Satchidananda Dehuri

Financial market creates a complex and ever changing environment in which population of investors are competing for profit. Predicting the future for financial gain is a difficult and challenging task, however at the same time it is a profitable activity. Hence, the ability to obtain the highly efficient financial model has become increasingly important in the competitive world. To cope with this, we consider functional link artificial neural networks (FLANNs) trained by particle swarm optimization (PSO) for stock index prediction (PSO-FLANN). Our strong experimental conviction confirms that the performance of PSO tuned FLANN model for the case of lower number of ahead prediction task is promising. In most cases LMS updated algorithm based FLANN model proved to be as good as or better than the RLS updated algorithm based FLANN but at the same time RLS updated FLANN model for the prediction of stock index system cannot be ignored.


Author(s):  
Tameru Hailesilassie

An application of deep convolutional neural network and recurrence plot for financial market movement prediction is presented. Though it is challenging and subjective to interpret its information, the pattern formed by a recurrence plot provide a useful insight into the dy- namical system. We used a recurrence plot of seven financial time series to train a deep neural network for financial market movement predic- tion. Our approach is tested on our dataset and achieved an average of 53.25% classification accuracy. The result suggests that a well trained deep convolutional neural network can learn a recurrence plot and pre- dict a financial market direction.


2018 ◽  
Vol 15 (4) ◽  
pp. 61-69
Author(s):  
Artur R. Musin

Study purpose.Existing approaches to forecasting dynamics of financial markets, as a rule, reduce to econometric calculations or technical analysis techniques, which in turn is a consequence of preferences among specialists, engaged in theoretical research and professional market participants, respectively. The main study purpose is developing a predictive economic-mathematical model that allows combining both approaches. In other words, this model should be estimated using traditional methods of econometrics and, at the same time, take into account the impact on the pricing process of the effect of clustering participants on behavioral patterns, as the basis of technical analysis. In addition, it is necessary that the created economic-mathematical model should take into account the phenomenon of existing historical trading levels and control the influence they exert on price dynamics, when it falls into local areas of these levels. Such analysis of price behavior patterns in certain areas of historical repeating levels is a popular approach among professional market participants. Besides, an important criterion of developing model’s potential applicability by a wide range of the interested specialists is its general functional form’s simplicity and, in particular, its components.Materials and methods. In the study, the market of the pound sterling exchange rate against the US dollar (GBP/USD) for the whole period of 2017 was chosen as the considered financial series, in order to forecast it. The presented economic-mathematical model was estimated by classical Kalman filter with an embedded neural network. The choice of these assessment tools can be explained by their wide capabilities in dealing with non-stationary, noisy financial market time series. In addition, applying Kalman filter is a popular technique for estimation local-level models, which principle was implemented in the newly model, proposed in article.Results. Using chosen approach of simultaneous applying Kalman filter and artificial neural network, there were obtained statistically significant estimations of all model’s coefficients. The subsequent model application on GBP/USD series from the test dataset allowed demonstrating its high predictive ability comparing with added random walk model, in particular judging by percentage of correct forecast directions. All received results have confirmed that constructed model allows effectively taking into account structural features of considered market and building good forecasts of future price dynamics.Conclusion. The study was focused on developing and improving apparatus of forecasting financial market prices dynamics. In turn, economic-mathematical model presented in that paper can be used both by specialists, carrying out theoretical studies of pricing process in financial markets, and by professional market participants, forecasting the direction of future price movements. High percentage of correct forecast directions makes it possible to use proposed model independently or as a confirmatory tool.


Author(s):  
P. N. Kumar ◽  
G. Rahul Seshadri ◽  
A. Hariharan ◽  
V. P. Mohandas ◽  
P. Balasubramanian

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ran Feng ◽  
Xiaoe Qu

PurposeTo identify and analyze the occurrence of Internet financial market risk, data mining technology is combined with deep learning to process and analyze. The market risk management of the Internet is to improve the management level of Internet financial risk, improve the policy of Internet financial supervision and promote the healthy development of Internet finance.Design/methodology/approachIn this exploration, data mining technology is combined with deep learning to mine the Internet financial data, warn the potential risks in the market and provide targeted risk management measures. Therefore, in this article, to improve the application ability of data mining in dealing with Internet financial risk management, the radial basis function (RBF) neural network algorithm optimized by ant colony optimization (ACO) is proposed.FindingsThe results show that the actual error of the ACO optimized RBF neural network is 0.249, which is 0.149 different from the target error, indicating that the optimized algorithm can make the calculation results more accurate. The fitting results of the RBF neural network and ACO optimized RBF neural network for nonlinear function are compared. Compared with the performance of other algorithms, the error of ACO optimized RBF neural network is 0.249, the running time is 2.212 s, and the number of iterations is 36, which is far less than the actual results of the other two algorithms.Originality/valueThe optimized algorithm has a better spatial mapping and generalization ability and can get higher accuracy in short-term training. Therefore, the ACO optimized RBF neural network algorithm designed in this exploration has a high accuracy for the prediction of Internet financial market risk.


Sign in / Sign up

Export Citation Format

Share Document