Preparation, Characterization and Adsorption Isotherm Study for Activated Carbon Produced from Palm Date Tree Pruning

2017 ◽  
Vol 43 (3) ◽  
pp. 242-249 ◽  
Author(s):  
Muhammad Saleem
2017 ◽  
Vol 29 (1) ◽  
pp. 9-13
Author(s):  
Masuma Sultana Ripa ◽  
Rafat Mahmood ◽  
Sabrina Khan ◽  
Easir A Khan

Adsorption separation of phenol from aqueous solution using activated carbon was investigated in this work. The adsorbent was prepared from coconut shell and activated by physical activation method. The coconut shell was first carbonized at 800°C under nitrogen atmosphere and activated by CO2 at the same temperature for one hour. The prepared activated carbon was characterized by Scanning Electron Microscope (SEM) and BET Surface Analyzer and by the determination of iodine number as well as Boehm titration. The iodine number indicates the degree of relative activation of the adsorbent. The equilibrium adsorption isotherm phenol from aqueous solution was performed using liquid phase batch adsorption experiments. The effect of experimental parameters including solution pH, agitation time, particle size, temperature and initial concentration was investigated. The equilibrium data was analyzed using Langmuir and Freundlich adsorption model to describe the adsorption isotherm and estimate the adsorption isotherm parameters. The results indicate the potential use of the adsorbent for removal of phenol from the aqueous solution.Journal of Chemical Engineering, Vol. 29, No. 1, 2017: 9-13


2021 ◽  
Vol 06 (03) ◽  
Author(s):  
Nora Seghairi ◽  

Phosphates in natural waters and whatever their origin, promote the formation of algae, reduce dissolved oxygen and reduce biodiversity in aquatic ecosystems. At high doses, phosphate salts can cause health problems. The objective of our study was to develop a simple, efficient and environmentally friendly sorption depollution technique on available and inexpensive media. We have studied the adsorption of phosphate on activated carbons prepared from date kernels. Batch tests were carried out in order to study different operating parameters such as the effect of contact time, pH, initial phosphate concentration and adsorbent dosage and adsorption kinetic. The sorption equilibrium was analyzed by Langmuir, Freundlich isotherms model. Results show that the phosphate adsorption was reversible and the quantity adsorbed reached its maximum value (14.49 mg/g) after 40 minutes. It was also found that phosphate uptake was affected by variation of pH, initial concentration of phosphate and activated carbon dosage. The adsorption improved with an acidic pH (pH = 6), initial concentration and adsorbent dosage. The results of kinetic studies revealed that adsorption phosphate on activated carbon based on date kernels (Biocar) and the intra-particle diffusion involved in the adsorption mechanism. Also, isotherm study showed that Langmuir isotherm best fit the data and the adsorption was a physical type.


Carbon ◽  
1997 ◽  
Vol 35 (9) ◽  
pp. 1415-1425 ◽  
Author(s):  
M.J.G. Linders ◽  
L.J.P. Van Den Broeke ◽  
J.J.G.M. Van Bokhoven ◽  
A.E. Duisterwinkel ◽  
F. Kapteijn ◽  
...  

1994 ◽  
Vol 30 (9) ◽  
pp. 191-197 ◽  
Author(s):  
R. Leyva Ramos ◽  
A. Juarez Martinez ◽  
R. M. Guerrero Coronado

The adsorption isotherm of chromium (VI) on activated carbon was obtained in a batch adsorber. The experimental adsorption data were fitted reasonably well to the Freundlich isotherm. The effect of pH on the adsorption isotherm was investigated at pH values of 4, 6, 7, 8, 10 and 12. It was found that at pH < 6, Cr(VI) was adsorbed and reduced to Cr(III) by the catalytic action of the carbon and that at pH ≥ 12, Cr(VI) was not adsorbed on activated carbon. Maximum adsorption capacity was observed at pH 6 and the adsorption capacity was diminished about 17 times by increasing the pH from 6 to 10. The pH effect was attributed to the different complexes that Cr(VI) can form in aqueous solution. The adsorption isotherm was also affected by the temperature since the adsorption capacity was increased by raising the temperature from 25 to 40°C. It was concluded that Cr(VI) was adsorbed significantly on activated carbon at pH 6 and that the adsorption capacity was greatly dependent upon pH.


Sign in / Sign up

Export Citation Format

Share Document