scholarly journals Unsteady Transition Characteristics of Rotating Stall in a Single-Stage Transonic Axial Compressor

Author(s):  
Chaoqun Nie ◽  
Jingyi Chen ◽  
Xingmin Gui ◽  
Qing Yu ◽  
Tongqing Wang

The unsteady transition characteristics of rotating stall have been studied experimentally in a single-stage transonic axial compressor. Three tested conditions in the near design and below design speed range, at tip relative Mach numbers from 1.26 to 1.0, were performed. The characteristics of rotating stall were studied by its dynamic behavior on the scale of compressor circumference and also by the flow field details in the blade passage. The dynamic behavior was analyzed by the technique of successive frequency spectrum and the flow field details were studied through internal transient pressure patterns in the blade passage plotted by the dynamic pressure data measured on the compressor shroud. It has been shown that intermittent pre-stall perturbations are evident for all the tested speeds and distinct by the different time and length scale of their existence. These are also interpreted by the difference of pressure loading and shock structure visualized in the pressure plots in the blade passage during stall inception. The pre-stall perturbations, with rather scattered frequency spectra, grow into fully developed stall abruptly. Nevertheless, the frequency spectrum of rotating stall falls into constant fraction of the frequency of compressor rotation for all the tested conditions. The increasing trend of the amplitude of pressure oscillation of rotating stall while gathering at its frequency spectrum could be detected in the stage of stall inception. Based on these two observations, there is a possibility of warning the stall precursors even for the high speed transonic compressor like the one tested in this paper.

Author(s):  
Byeung Jun Lim ◽  
Tae Choon Park ◽  
Young Seok Kang

In this study, characteristics of stall inception in a single-stage transonic axial compressor with circumferential grooves casing treatment were investigated experimentally. Additionally, the characteristic of increasing irregularity in the pressure inside circumferential grooves as the compressor approaches the stall limit was applied to the stall warning method. Spike-type rotating stall was observed in the single-stage transonic axial compressor with smooth casing. When circumferential grooves were applied, the stall inception was suppressed and the operating point of the compressor moved to lower flow rate than the stall limit. A spike-like disturbance was developed into a rotating stall cell and then the Helmholtz perturbation was overlapped on it at N = 80%. At N = 70 %, the Helmholtz perturbation was observed first and the amplitude of the wave gradually increased as mass flow rate decreased. At N = 60%, spike type stall inceptions were observed intermittently and then developed into continuous rotating stall at lower mass flow rate. Pressure measured at the bottom of circumferential grooves showed that the level of irregularity of pressure increased as flow rate decreased. Based on the characteristic of increasing irregularity of the pressure signals inside the circumferential grooves as stall approaches, an autocorrelation technique was applied to the stall warning. This technique could be used to provide warning against stall and estimate real-time stall margins in compressors with casing treatments.


2012 ◽  
Vol 15 (6) ◽  
pp. 85-91
Author(s):  
Ji-Han Song ◽  
Oh-Sik Hwang ◽  
Tae Choon Park ◽  
Byung-Jun Lim ◽  
Soo-Seok Yang ◽  
...  

1998 ◽  
Vol 120 (4) ◽  
pp. 625-636 ◽  
Author(s):  
H. J. Weigl ◽  
J. D. Paduano ◽  
L. G. Fre´chette ◽  
A. H. Epstein ◽  
E. M. Greitzer ◽  
...  

Rotating stall and surge have been stabilized in a transonic single-stage axial compressor using active feedback control. The control strategy is to sense upstream wall static pressure patterns and feed back the signal to an annular array of twelve separately modulated air injectors. At tip relative Mach numbers of 1.0 and 1.5 the control achieved 11 and 3.5 percent reductions in stalling mass flow, respectively, with injection adding 3.6 percent of the design compressor mass flow. The aerodynamic effects of the injection have also been examined. At a tip Mach number, Mtip, of 1.0, the stall inception dynamics and effective active control strategies are similar to results for low-speed axial compressors. The range extension was achieved by individually damping the first and second spatial harmonics of the prestall perturbations using constant gain feedback. At a Mtip of 1.5 (design rotor speed), the prestall dynamics are different than at the lower speed. Both one-dimensional (surge) and two-dimensional (rotating stall) perturbations needed to be stabilized to increase the compressor operating range. At design speed, the instability was initiated by approximately ten rotor revolutions of rotating stall followed by classic surge cycles. In accord with the results from a compressible stall inception analysis, the zeroth, first, and second spatial harmonics each include more than one lightly damped mode, which can grow into the large amplitude instability. Forced response testing identified several modes traveling up to 150 percent of rotor speed for the first three spatial harmonics; simple constant gain control cannot damp all of these modes and thus cannot stabilize the compressor at this speed. A dynamic, model-based robust controller was therefore used to stabilize the multiple modes that comprise the first three harmonic perturbations in this transonic region of operation.


Author(s):  
Limin Gao ◽  
Ruiyu Li ◽  
Fang Miao ◽  
Yutong Cai

Contra-rotating axial compressor/fan (CRAC) is a promising technology to meet the future goals aircraft industry. Massive time accurate simulations are performed to investigate rotating stall in CRAC containing two counter-rotating rotors. Particularly, the back pressure increasing with a very small step to avoid missing flow field transition from stability to instability. Due to the canceling of the stator, the instability of downstream rotor is more stronger. The present studies mostly focus on the downstream rotor. The tip leakage flow field is analyzed in detail under near stall condition, which indicates that a secondary leakage flow plays an important role in the unsteadiness of CRAC's unsteady flow field. The frequency analysis in the tip clearance of downstream rotor under multiple near stall conditions captured the transition of the second harmonic frequency which can be used as stall inception signal. Moreover, the rotating stall onset process in real CRAC is simulated on the numerical stall.


Author(s):  
Jo¨rg Bergner ◽  
Matthias Kinzel ◽  
Heinz-Peter Schiffer ◽  
Chunill Hah

To improve the understanding of spike-type stall inception of a transonic axial compressor, measurements of the unsteady static pressure in the rotor endwall region are analyzed. At design speed, a detailed experimental investigation of the unsteadiness of the pressure field at the rotor endwall at near stall condition shows a strong fluctuation of the tip clearance flow. Both vortex strength and -trajectory oscillate randomly. Analysis of the wall pressure time histories during stall inception suggests that spike-type disturbances of the flow field correlate with an upstream motion of one blade passages shock front. In addition, the evolution of a stall cell could be visualized by means of static wall-pressure contour plots.


Author(s):  
Alexander K. Simpson ◽  
John P. Longley

There are two established mechanisms, spike and modal inception, by which rotating stall is initiated in an axial flow compressor. Whilst the “Critical incidence hypothesis” and the “Zero slope criterion” are useful ideas in explaining the different stability boundaries for spikes and modes they do not provide the designer with a predictive tool. A detailed experimental investigation utilising a single-stage low-speed compressor is presented in which the aerodynamic environment of a rotor blade row is changed (rotor geometry is held fixed) so that it exhibited both spike and modal inception upon throttling into stall. The dominant mechanism of stall inception was found to be dependent on both the inlet flowfield and the downstream stator. The measurements are analysed and show that the meridional acceleration across the tip region of the rotor influences the mechanism by which rotating stall is incepted. This research is presented as a contribution towards the prediction of the stall inception mechanism.


Author(s):  
Scott C. Morris ◽  
Joshua D. Cameron ◽  
Matthew A. Bennington ◽  
G. Scott McNulty ◽  
Aspi Wadia

The performance, efficiency, and stall inception of an axial compressor was investigated experimentally with small levels of rotor centerline offset. The measurements were acquired using a high-speed, single-stage compressor. The rotor was levitated magnetically during operation which allowed precise positioning of the rotor centerline within the circular casing. The offset magnitude used in this study was 0.23% of the rotor tip chord, equivalent to approximately 24% of the nominal gap value. The resulting asymmetry in the tip gap resulted in circumferential and radial variations in the measured stagnation pressure and stagnation temperature downstream of the stage. However, the spatially averaged performance of the compressor was not measurably different from that obtained with a concentric rotor. An array of unsteady (Kulite) pressure transducers was used to investigate the flow field during stall inception. These measurements were recorded during transient throttle movements which quickly decreased the mass flow in the compressor until the onset of rotating stall. A second set of measurements was acquired during quasi-transient throttling starting from a mass flow about 1% larger than the stalling mass flow. In both the symmetric and offset cases the flow breakdown was consistent with spike type inception. The measurements with offset indicated that the asymmetries in the local compressor flow field produced significant changes in the number of short-length scale rotating disturbances observed during throttling to stall. These disturbances appeared in the region of the annulus where the local flow coefficient was lowest and usually decayed upon rotating to the higher flow region. In this way, the addition of very small amounts of rotor offset tended to fix the disturbance generation location in the stationary reference frame. This was in contrast to the symmetric tip clearance case where the location of spike generation appeared stochastic.


Author(s):  
J. F. Brouckaert ◽  
N. Van de Wyer ◽  
B. Farkas ◽  
F. Ullmann ◽  
J. Desset ◽  
...  

The experimental investigation of the unsteady flow field in a single stage low pressure axial compressor designed for a counter-rotating turbofan engine architecture is presented in this paper. The rotor casing was instrumented with fast response pressure transducers to perform a detailed survey of the tip flow features during stable operation, near stall and during stall. Tests were performed at two different Reynolds numbers representative of cruise and take-off conditions in the VKI-R4 closed loop compressor test rig. Simultaneous time-resolved measurements with a miniature fast response total pressure probe were performed by radial traverses at the rotor exit to support the tip flow field investigation. The casing measurements allow to map the direction and extension of the tip leakage vortex. The flow path measurements show its extension at the exit of the rotor blade passage and its evolution as throttling is increased towards the compressor stability limit. These experimental results are discussed and compared to CFD simulations, showing good agreement. Stall inception and rotating stall patterns are investigated as well and described in this paper. They are based both on hot wire measurements and on the casing unsteady pressure measurements.


Sign in / Sign up

Export Citation Format

Share Document