METHOD OF «MICROPROCESSES» IN MODELING THE PROCESSES OF THERMAL CONDUCTIVITY AND DIFFUSION IN BODIES OF CANONICAL SHAPE. GENERALIZED BOUNDARY CONDITIONS OF THE THIRD KIND

2021 ◽  
Vol 2 (2) ◽  
pp. 7-15
Author(s):  
S.V. Fedosov ◽  
M.O. Bakanov
2019 ◽  
Vol 34 (02) ◽  
pp. 2050019 ◽  
Author(s):  
Y. Zhang ◽  
M. M. Fan ◽  
C. C. Ruan ◽  
Y. W. Zhang ◽  
X.-J. Li ◽  
...  

[Formula: see text] ceramic samples have a structure similar to phonon glass electronic crystals, and their thermoelectric properties can be effectively adjusted through repeated grinding and sintering. The results show that multi-sintering can make their grain refined and increase their grain boundary, which will effectively increase density and phonon scattering. Finally, multi-sintering can reduce the resistivity and thermal conductivity, thus obviously improve thermoelectric figure of merit [Formula: see text] of [Formula: see text]. The optimum [Formula: see text] value of 0.26 is achieved at 923 K by the third sintered sample.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1205
Author(s):  
Usman Riaz ◽  
Akbar Zada ◽  
Zeeshan Ali ◽  
Ioan-Lucian Popa ◽  
Shahram Rezapour ◽  
...  

We study a coupled system of implicit differential equations with fractional-order differential boundary conditions and the Riemann–Liouville derivative. The existence, uniqueness, and at least one solution are established by applying the Banach contraction and Leray–Schauder fixed point theorem. Furthermore, Hyers–Ulam type stabilities are discussed. An example is presented to illustrate our main result. The suggested system is the generalization of fourth-order ordinary differential equations with anti-periodic, classical, and initial boundary conditions.


2021 ◽  
Vol 14 (2) ◽  
pp. 40-45
Author(s):  
D. V. VORONIN ◽  

The Navier-Stokes equations have been used for numerical modeling of chemically reacting gas flow in the propulsion chamber. The chamber represents an axially symmetrical plane disk. Fuel and oxidant were fed into the chamber separately at some angle to the inflow surface and not parallel one to another to ensure better mixing of species. The model is based on conservation laws of mass, momentum, and energy for nonsteady two-dimensional compressible gas flow in the case of axial symmetry. The processes of viscosity, thermal conductivity, turbulence, and diffusion of species have been taken into account. The possibility of detonation mode of combustion of the mixture in the chamber was numerically demonstrated. The detonation triggering depends on the values of angles between fuel and oxidizer jets. This type of the propulsion chamber is effective because of the absence of stagnation zones and good mixing of species before burning.


2021 ◽  
Vol 15 ◽  
pp. 12-21
Author(s):  
Jonatas Motta Quirino ◽  
Eduardo Dias Correa ◽  
Rodolfo do Lago Sobral

- The present work describes the thermal profile of a single dissipation fin, where their surfaces reject heat to the environment. The problem happens in steady state, which is, all the analysis occurs after the thermal distribution reach heat balance considering that the fin dissipates heat by conduction, convection and thermal radiation. Neumann and Dirichlet boundary conditions are established, characterizing that heat dissipation occurs only on the fin faces, in addition to predicting that the ambient temperature is homogeneous. Heat transfer analysis is performed by computational simulations using appropriate numerical methods. The most of solutions in the literature consider some simplifications as constant thermal conductivity and linear boundary conditions, this work addresses this subject. The method applied is the Kirchhoff Transformation, that uses the thermal conductivity variation to define the temperatures values, once the thermal conductivity variate as a temperature function. For the real situation approximation, this work appropriated the silicon as the fin material to consider the temperature function at each point, which makes the equation that governs the non-linear problem. Finally, the comparison of the results obtained with typical results proves that the assumptions of variable thermal conductivity and heat dissipation by thermal radiation are crucial to obtain results that are closer to reality.


2021 ◽  
Vol 13 (11) ◽  
pp. 168781402110609
Author(s):  
Hossein Talebi Rostami ◽  
Maryam Fallah Najafabadi ◽  
Davood Domiri Ganji

This study analyzed a Timoshenko beam with Koch snowflake cross-section in different boundary conditions and for variable properties. The equation of motion was solved by the finite element method and verified by Solidworks simulation in a way that the maximum error was about 2.9% for natural frequencies. Displacement and natural frequency for each case presented and compared to other cases. Significant research achievements illustrate that if we change the Koch snowflake cross-section of the beam from the first iteration to the second, the area and moment of inertia will increase, and we have a 5.2% rise in the first natural frequency. Similarly, by changing the cross-section from the second iteration to the third, a 10.2% growth is observed. Also, the hollow cross-section is considered, which can enlarge the natural frequency by about 26.37% compared to a solid one. Moreover, all the clamped-clamped, hinged-hinged, clamped-free, and free-free boundary conditions have the highest natural frequency for the Timoshenko beam with the third iteration of the Koch snowflake cross-section in solid mode. Finally, examining important physical parameters demonstrates that variable density from a minimum value to the standard value along the beam increases the natural frequencies, while variable elastic modulus decreases it.


Sign in / Sign up

Export Citation Format

Share Document