scholarly journals IQGAP1 silencing suppresses the malignant characteristics of laryngeal squamous cell carcinoma cells

2017 ◽  
Vol 33 (1) ◽  
pp. 73-78 ◽  
Author(s):  
Xiaoxia Wang ◽  
Chun He ◽  
Chaohui Li ◽  
Benhong Ren ◽  
Qing Deng ◽  
...  

Background: Laryngeal squamous cell carcinoma (LSCC) has a poor prognosis due to recurrence and metastasis. IQ-domain GTPase-activating protein 1 (IQGAP1), a scaffold protein, plays an important role in tumorigenesis and malignant development. In this study, we aimed to explore the role of IQGAP1 in LSCC. Methods: Expression of IQGAP1 in human LSCC specimens was assessed by immunohistochemistry. We also evaluated the roles of IQGAP1 in cell proliferation, migration and invasion and epithelial-to-mesenchymal transition (EMT) in Hep-2 cells. Results: The expression of IQGAP1 protein was significantly up-regulated in LSCC tissues compared with normal laryngeal tissues (p = 0.002). Furthermore, the knockdown of IQGAP1 in Hep-2 cells inhibited cell growth, migration and invasion. Moreover, we found that IQGAP1 silencing reversed EMT. Conclusions: These results show for the first time that IQGAP1 is up-regulated in LSCC tissues and plays an important role in LSCC cell proliferation and invasiveness, which indicates that IQGAP1 could work as an oncogene and may serve as a promising molecular target for treatment of LSCC.

2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Yuan Li ◽  
Chenjuan Tao ◽  
Lili Dai ◽  
Caixia Cui ◽  
Chaohui Chen ◽  
...  

AbstractIntroduction: Laryngeal squamous cell carcinoma (LSCC) is a highly aggressive malignant cancer, but the molecular mechanisms underlying its development and progression remain largely elusive. The purpose of the present study is to investigate the expression profile and functional role of microRNA-625 (miR-625) in LSCC.Materials and methods: LSCC tissues and adjacent normal tissues were collected from 86 LSCC patients. The expression levels of miR-625 and SOX4 mRNA in tissues and cells were detected by RT-qPCR analysis. The expression levels of SOX4 and EMT-related proteins were detected by western blot analysis. In vitro cell proliferation, migration, and invasion were detected by MTT assay, colony formation assay, wound healing assay, and transwell invasion assay, respectively. Dual-luciferase reporter assay was performed to verify the binding relationship between miR-625 and the 3′-UTR of SOX4.Results: The results demonstrated that miR-625 is significantly down-regulated in clinical LSCC tissues, and its low expression may be closely associated with unfavorable clinicopathological characteristics of LSCC patients. Overexpression of miR-625 significantly suppressed the proliferation, migration, invasion, and EMT of LSCC cells. Furthermore, SOX4 was validated as a direct target of miR-625 in LSCC cells, and rescue experiments suggested that restoration of SOX4 blocked the tumor suppressive role of miR-625 in LSCC cells.Conclusions: Taken together, these findings highlighted a critical role of miR-625 in the pathogenesis of LSCC, and restoration of miR-625 could be considered as a potential therapeutic strategy against this fatal disease.


2020 ◽  
Vol 10 ◽  
Author(s):  
Xin Li ◽  
Ping Wu ◽  
Yaoyun Tang ◽  
Yuhua Fan ◽  
Yalan Liu ◽  
...  

Laryngeal squamous cell carcinoma (LSCC) arises from the squamous epithelium of the larynx and is associated with a high incidence of cervical lymph node metastasis. MicroRNAs (miRNAs) play a crucial role in the epigenetic regulation of cellular biological processes, including cancer metastasis. However, the molecular mechanisms of specific miRNAs responsible for LSCC metastasis and their clinical significance have yet to be fully elucidated. In this study, LSCC cohort datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were downloaded and examined by comprehensive bioinformatics analysis, which revealed that upregulation of mRNA SERPINE1 and downregulation of miR-181c-5p were associated with unfavorable overall survival. Our analysis showed that SERPINE1 expression negatively correlated with the expression level of miR-181c-5p in our LSCC patient samples. Silencing of miR-181c-5p expression promoted cell migration and invasion in cell lines, whereas the overexpression of miR-181c-5p suppressed cell migration and epithelial-to-mesenchymal transition (EMT) through the downregulation of SERPINE1. Further analysis showed that the enhancement effect on EMT and metastasis induced by silencing miR-181c-5p could be rescued through knockdown of SERPINE1 expression in vitro. Collectively, our findings indicated that miR-181c-5p acted as an EMT suppressor miRNA by downregulation of SERPINE1 in LSCC and offers novel strategies for the prevention of metastasis in LSCC.


2018 ◽  
Vol 31 (Supplement_1) ◽  
pp. 179-179
Author(s):  
Toshiyuki Kobayashi ◽  
Atsushi Shiozaki ◽  
Hitoshi Fujiwara ◽  
Hirotaka Konishi ◽  
Yoshito Nako ◽  
...  

Abstract Background Recent studies have reported important roles for chloride intracellular channel 1 (CLIC1) in various cancers; however, its involvement in esophageal squamous cell carcinoma (ESCC) remains unclear. The aim of the present study was to investigate the role of CLIC1 in human ESCC. Methods CLIC1 expression in human ESCC cell lines was analyzed by Western blotting. Knockdown experiments were conducted with CLIC1 siRNA, and their effects on cell proliferation, the cell cycle, apoptosis, migration, and invasion were analyzed. The gene expression profiles of cells were analyzed using a microarray analysis. An immunohistochemical analysis was performed on 61 primary tumor samples obtained from ESCC patients who underwent esophagectomy. Results ESCC cells strongly expressed CLIC1. The depletion of CLIC1 using siRNA inhibited cell proliferation, induced apoptosis, and promoted cell migration and invasion. The results of the microarray analysis revealed that the depletion of CLIC1 regulated apoptosis via the TLR2/JNK pathway. Immunohistochemistry showed that CLIC1 was present in the cytoplasm of carcinoma cells, and that the very strong or very weak expression of CLIC1 was an independent poor prognostic factor. Conclusion The present results suggest that the very strong expression of CLIC1 enhances tumor survival, while its very weak expression promotes cellular movement. The present study provides an insight into the role of CLIC1 as a switch among tumor behaviors in ESCC. Disclosure All authors have declared no conflicts of interest.


Author(s):  
Qibing Chen ◽  
Yan Wang ◽  
Fen Li ◽  
Xiang Cheng ◽  
Yu Xiao ◽  
...  

Background: Macrophage migration inhibitory factor (MIF), originally reported as an inflammation regulating molecule, is elevated in various cancer cells, which may promote carcinogenesis. Meanwhile, ISO-1 is a potent small molecular inhibitor of MIF, which has not been investigated in nasopharyngeal carcinoma (NPC); hence the impact of ISO-1 on NPC cells remains to be illustrated. Objective: This study intended to explore the biological function of ISO-1 in NPC cells in vitro and prove a possibility of ISO-1 being a novel agent in NPC treatments. Methods: Gene expression of MIF in Head and Neck squamous cell carcinoma were obtained from The Cancer Genome Atlas (TCGA) database. Nasal pharyngeal tissues were collected from adult patients undergoing nasopharyngeal biopsy for MIF level detection. Proliferation of NPC cell lines 5-8B and 6-10B was studied using Cell Counting Kit-8 (CCK-8) assay and plate-colony-formation assay, apoptosis was determined by flow cytometry and TUNEL staining, migration and invasion capacities were measured by wound-healing assay and transwell assay, all to explore the function of ISO-1 in NPC cells in vitro. Epithelial-to-mesenchymal transition (EMT) level of NPC cells was determined by Western blot analysis and immunofluorescence assay. Results: Transcript level of MIF was significantly higher in head and neck squamous cell carcinoma. Protein MIF was overexpressed in human NPC tissues compared to non-cancerous ones, and its expression could be compromised by ISO-1 in vitro. 100μM ISO-1 significantly hindered NPC cells migration and invasion capacities in vitro but acted relatively poorly on proliferation and apoptosis. Immunofluorescence assay and Western blotting implied a down-regulated EMT level through TGF-β/Smad4 axis in ISO-1 treated NPC cells compared to the vehicle. Conclusion: This study indicated that MIF antagonist ISO-1 holds impact on NPC progression by influencing the migration and invasion of NPC cells ISO-1 inhibits the EMT process of NPC cells through TGF-β/Smad4 axis, supporting that prudent application of ISO-1 may be a potential adjuvant treatment for NPC.


2020 ◽  
Vol 168 (6) ◽  
pp. 651-657 ◽  
Author(s):  
Fenqian Yuan ◽  
Zhiguo Miao ◽  
Wen Chen ◽  
Fanggeng Wu ◽  
Chao Wei ◽  
...  

Abstract Long non-coding RNA is an endogenous non-coding RNA that has currently been proved to be an important player in cancer cell biology. In the present study, we investigated the biological role of PHACTR2-AS1 in tongue squamous cell carcinoma (TSCC). PHACTR2-AS1 was preferentially localized in the cytoplasm, and was notably upregulated in TSCC tissues. High PHACTR2-AS1 was correlated with tumour differentiation, metastatic clinical features, relapse and shortened survival time. Depletion of PHACTR2-AS1 did not affect TSCC cell viability and colony formation ability, whereas substantially inhibited cell migration and invasion in vitro and lung metastasis in vivo. Mechanistically, PHACTR2-AS1 could sponge miR-137 to increase Snail expression, resulting in triggering epithelial–mesenchymal transition process, thereby promoting TSCC cell metastasis. Taken together, our data for the first time elucidate the metastasis-promoting role of PHACTR2-AS1 in TSCC, hinting a new therapeutic target for metastatic TSCC patients.


2015 ◽  
Vol 67 (4) ◽  
pp. 491-500 ◽  
Author(s):  
Rocco Cappellesso ◽  
Gino Marioni ◽  
Marika Crescenzi ◽  
Luciano Giacomelli ◽  
Vincenza Guzzardo ◽  
...  

2020 ◽  
Vol 145 ◽  
pp. 110346
Author(s):  
Thodur Madapusi Balaji ◽  
Saranya Varadarajan ◽  
Raghunathan Jagannathan ◽  
A. Thirumal Raj ◽  
Lakshmi Priya Sridhar ◽  
...  

2019 ◽  
Vol 244 (13) ◽  
pp. 1070-1080 ◽  
Author(s):  
Hao Wu ◽  
Juanjuan Li ◽  
Jianqiu Chen ◽  
Yong Yin ◽  
Peng Da ◽  
...  

The present study explored the role of LAMP3 and related molecular mechanisms in the efficacy of radiation exposure in laryngeal squamous cell carcinoma (LSCC). A lentivirus vector containing the LAMP3 gene was transfected into HEp-2 cells to construct siRNA-LAMP3 and complementation (siLAMP3+LAMP3) groups. Treatment with 4 Gy or 8 Gy radiation was administered to evaluate the role of LAMP3 in radiation therapy. Apoptosis was detected by Annexin V/propidium iodide double staining. Cell migration and invasion were measured in vitro using Transwell and Matrigel assays. Downstream genes regulated by LAMP3 were analyzed using RNA sequencing. Furthermore, a patient-derived xenograft (PDX) model of LSCC was established to verify the efficacy of radiation exposure and the associated signaling pathways downstream of LAMP3. The efficacy of radiation showed that cell proliferation was significantly inhibited by siRNA-LAMP3 knockdown. Increased apoptosis was also observed. Notably, the inhibitory effect was attenuated and apoptosis rates were decreased after LAMP3 complementation. In vitro cellular assays showed that migration and invasion were significantly suppressed by siRNA-LAMP3 knockdown and increased after LAMP3 complementation. Analysis of the efficacy of radiation exposure in the PDX model showed that LAMP3-specific knockdown inhibited tumor growth and that tumor growth was further reduced by the combined radiotherapy treatment. According to transcriptome analysis, the extracellular matrix-receptor interaction pathway is regulated by LAMP3, and further analysis revealed significant differences in key-associated molecules, including laminin subunit gamma-2 (LAMC2) and tenascin-C (TNC). Validation of the in vivo PDX model using qPCR and Western blot analyses supported the abovementioned results. The present findings suggest that reduced LAMP3 expression enhances the efficacy of radiation exposure in LSCC by regulating the LAMP3/LAMC2/TNC signaling pathway. Impact statement It is important to establish effective early diagnostic indicators and reliable treatment strategies for laryngeal squamous cell carcinoma (LSCC). We previously found that expression of LAMP3 was significantly higher in cancerous tissues compared to adjacent normal surgical margin tissues. The present study explored the role of LAMP3 and the related molecular mechanisms in the efficacy of radiation exposure in LSCC. In vitro Transwell and Matrigel assays were performed, and a patient-derived xenograft (PDX) model of LSCC was established. Associated signaling pathways downstream of LAMP3 were analyzed using RNA sequencing. Signaling pathways regulated by LAMP3 were clearly identified by combining the PDX model with transcriptome analysis. Reduced LAMP3 expression enhanced the efficacy of radiation exposure in LSCC. Thus, by utilizing this molecule as a marker, specific groups of patients may be screened for targeted therapy in the future.


Sign in / Sign up

Export Citation Format

Share Document