scholarly journals New Water and Air Pollution Sensors Added to the Sonic Kayak Citizen Science System for Low Cost Environmental Mapping

2021 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Amber G. F. Griffiths ◽  
Joanne K. Garrett ◽  
James P. Duffy ◽  
Kaffe Matthews ◽  
Federico G. Visi ◽  
...  
2020 ◽  
Author(s):  
Amber GF Griffiths ◽  
Joanne K Garrett ◽  
James P Duffy ◽  
Kaffe Matthews ◽  
Federico G Visi ◽  
...  

AbstractSonic Kayaks are low-cost open-source systems for gathering fine-scale environmental data. The system is designed to be simple to fit on to standard kayaks or canoes, and full instructions have been made available for anyone wishing to build their own. The first version included temperature sensors and a hydrophone for recording underwater sound. Here we outline the design and integration of two new sensors, for underwater turbidity and above water air particulate pollution. All sensors record continually, and the GPS location, time and date are also stored for every data point, allowing fine-scale environmental data mapping. The data being collected by the sensors is sonified (turned into sound) in real-time, allowing the paddler to hear the data as they are collecting it, making it possible to locate and follow interesting occurrences. We present proof-of principle data for the first time for all the sensors, demonstrating how the system can be used for environmental mapping, and discuss potential future applications and adaptations. We believe the Sonic Kayak system offers particular promise for citizen science and environmental activism, as well as allowing professional researchers to gather data that was previously difficult or impossible to obtain.


2021 ◽  
Vol 14 (9) ◽  
pp. 6023-6038 ◽  
Author(s):  
Eric A. Wendt ◽  
Casey Quinn ◽  
Christian L'Orange ◽  
Daniel D. Miller-Lionberg ◽  
Bonne Ford ◽  
...  

Abstract. Atmospheric particulate matter smaller than 2.5 µm in diameter (PM2.5) has a negative impact on public health, the environment, and Earth's climate. Consequently, a need exists for accurate, distributed measurements of surface-level PM2.5 concentrations at a global scale. Existing PM2.5 measurement infrastructure provides broad PM2.5 sampling coverage but does not adequately characterize community-level air pollution at high temporal resolution. This motivates the development of low-cost sensors which can be more practically deployed in spatial and temporal configurations currently lacking proper characterization. Wendt et al. (2019) described the development and validation of a first-generation device for low-cost measurement of AOD and PM2.5: the Aerosol Mass and Optical Depth (AMODv1) sampler. Ford et al. (2019) describe a citizen-science field deployment of the AMODv1 device. In this paper, we present an updated version of the AMOD, known as AMODv2, featuring design improvements and extended validation to address the limitations of the AMODv1 work. The AMODv2 measures AOD and PM2.5 at 20 min time intervals. The sampler includes a motorized Sun tracking system alongside a set of four optically filtered photodiodes for semicontinuous, multiwavelength (current version at 440, 500, 675, and 870 nm) AOD sampling. Also included are a Plantower PMS5003 sensor for time-resolved optical PM2.5 measurements and a pump/cyclone system for time-integrated gravimetric filter measurements of particle mass and composition. AMODv2 samples are configured using a smartphone application, and sample data are made available via data streaming to a companion website (https://csu-ceams.com/, last access: 16 July 2021). We present the results of a 9 d AOD validation campaign where AMODv2 units were co-located with an AERONET (Aerosol Robotics Network) instrument as the reference method at AOD levels ranging from 0.02 ± 0.01 to 1.59 ± 0.01. We observed close agreement between AMODv2s and the reference instrument with mean absolute errors of 0.04, 0.06, 0.03, and 0.03 AOD units at 440, 500, 675, and 870 nm, respectively. We derived empirical relationships relating the reference AOD level to AMODv2 instrument error and found that the mean absolute error in the AMODv2 deviated by less than 0.01 AOD units between clear days and elevated-AOD days and across all wavelengths. We identified bias from individual units, particularly due to calibration drift, as the primary source of error between AMODv2s and reference units. In a test of 15-month calibration stability performed on 16 AMOD units, we observed median changes to calibration constant values of −7.14 %, −9.64 %, −0.75 %, and −2.80 % at 440, 500, 675, and 870 nm, respectively. We propose annual recalibration to mitigate potential errors from calibration drift. We conducted a trial deployment to assess the reliability and mechanical robustness of AMODv2 units. We found that 75 % of attempted samples were successfully completed in rooftop laboratory testing. We identify several failure modes in the laboratory testing and describe design changes that we have since implemented to reduce failures. We demonstrate that the AMODv2 is an accurate, stable, and low-cost platform for air pollution measurement. We describe how the AMODv2 can be implemented in spatial citizen-science networks where reference-grade sensors are economically impractical and low-cost sensors lack accuracy and stability.


2020 ◽  
Author(s):  
Vivien Voss ◽  
K. Heinke Schlünzen ◽  
David Grawe

<p>Air pollution is an important topic within urban areas.  Limit values as given in the European Guidelines are introduced to reduce negative effects on humans and vegetation.  Exceedances of the limit values are to be assessed using measurements.  In case of found exceedances of the limit values, the local authorities need to act to reduce pollution levels. Highest values are found for several pollutants (NOx, NO2, particles) within densely build-up urban areas with traffic emissions being the major source and dispersion being very much impacted by the urban structures.  The quality assured measuring network used by the authorities is often too coarse to determine the heterogeneity in the concentration field. Low cost sample devices as employed in several citizen science projects might help to overcome the data sparsity. Volunteers measure the air quality at many sites, contribute to the measurement networks and provide the data on the web. However, the questions arising are: a) Are these data of sufficient high quality to provide results comparable to those of the quality assured networks? b) Is the network density sufficient to determine concentration patterns within the urban canopy layer? <br>One-year data from a citizen science network, which measures particulate matter (PM10, PM2.5) were compared to measurements provided by the local environmental agency, using two hot-spot areas in the city of Hamburg as an example. To determine how well the measurements agree with each other, a regression analyses was performed dependent on seasonal and diurnal cycles. Additionally, model simulations with the microscale obstacle resolving model MITRAS were performed for two characteristic building structures and different meteorological situations. The model results were used to determine local hot spots as well as areas where measurements might represent the concentration of particles for the urban quarter. The low cost sensor measurements show a general agreement to the city’s measurements, however, the values per sensor differ. Moreover, the measurements of the low-cost-sensor show an unrealistic dependence on relative humidity, resulting in over- or underestimations in certain cases. The model results clearly show that only a few sites allow measurements to be representative for a city quarter. The measurements of the citizen science project can provide a good overview about the tendencies of the air quality, but are currently not of sufficient quality to provide measurements calling for legal action.</p><p>The model results were used for the project AtMoDat. AtMoDat is an attempt to create a data standard for obstacle resolving models based on the existing Climate and Forecast (CF) conventions. A web-based survey is developed to get information on the requirements for the data standard. The next step is to extend the collection of model characteristics and eventually to provide a generic scheme.</p><p><strong>Acknowledgements</strong><br>This work contributes to project “AtMoDat” funded by the Federal Ministry of Education and Research under the funding number 16QK02C. Responsibility for the content of this publication lies with the authors.</p>


Data in Brief ◽  
2021 ◽  
pp. 107127
Author(s):  
Jose M. Barcelo-Ordinas ◽  
Pau Ferrer-Cid ◽  
Jorge Garcia-Vidal ◽  
Mar Viana ◽  
Ana Ripoll

2020 ◽  
Vol 12 (23) ◽  
pp. 10089
Author(s):  
Andre M. Eanes ◽  
Todd R. Lookingbill ◽  
Jeremy S. Hoffman ◽  
Kelly C. Saverino ◽  
Stephen S. Fong

Air pollution and the urban heat island effect are consistently linked to numerous respiratory and heat-related illnesses. Additionally, these stressors disproportionately impact low-income and historically marginalized communities due to their proximity to emissions sources, lack of access to green space, and exposure to other adverse environmental conditions. Here, we use relatively low-cost stationary sensors to analyze PM2.5 and temperature data throughout the city of Richmond, Virginia, on the ten hottest days of 2019. For both hourly means within the ten hottest days of 2019 and daily means for the entire record for the year, the temperature was found to exhibit a positive correlation with PM2.5. Analysis of hourly means on the ten hottest days yielded a diurnal pattern in which PM2.5 levels peaked in the early morning and reached their minima in the mid-afternoon. Spatially, sites exhibiting higher temperatures consistently had higher PM2.5 readings, with vulnerable communities in the east end and more intensely developed parts of the city experiencing significantly higher temperatures and PM2.5 concentrations than the suburban neighborhoods in the west end. These findings suggest an uneven distribution of air pollution in Richmond during extreme heat events that are similar in pattern but less pronounced than the temperature differences during these events, although further investigation is required to verify the extent of this relationship. As other studies have found both of these environmental stressors to correlate with the distribution of green space and other land-use factors in cities, innovative and sustainable planning decisions are crucial to the mitigation of these issues of inequity going forward.


2021 ◽  
Author(s):  
Hamid Omidvarborna ◽  
Prashant Kumar

<p>The majority of people spend most of their time indoors, where they are exposed to indoor air pollutants. Indoor air pollution is ranked among the top ten largest global burden of a disease risk factor as well as the top five environmental public health risks, which could result in mortality and morbidity worldwide. The spent time in indoor environments has been recently elevated due to coronavirus disease 2019 (COVID-19) outbreak when the public are advised to stay in their place for longer hours per day to protect lives. This opens an opportunity to low-cost air pollution sensors in the real-time Spatio-temporal mapping of IAQ and monitors their concentration/exposure levels indoors. However, the optimum selection of low-cost sensors (LCSs) for certain indoor application is challenging due to diversity in the air pollution sensing device technologies. Making affordable sensing units composed of individual sensors capable of measuring indoor environmental parameters and pollutant concentration for indoor applications requires a diverse scientific and engineering knowledge, which is not yet established. The study aims to gather all these methodologies and technologies in one place, where it allows transforming typical homes into smart homes by specifically focusing on IAQ. This approach addresses the following questions: 1) which and what sensors are suitable for indoor networked application by considering their specifications and limitation, 2) where to deploy sensors to better capture Spatio-temporal mapping of indoor air pollutants, while the operation is optimum, 3) how to treat the collected data from the sensor network and make them ready for the subsequent analysis and 4) how to feed data to prediction models, and which models are best suited for indoors.</p>


2021 ◽  
Author(s):  
Daniel Westervelt ◽  
Celeste McFarlane ◽  
Faye McNeill ◽  
R (Subu) Subramanian ◽  
Mike Giordano ◽  
...  

<p>There is a severe lack of air pollution data around the world. This includes large portions of low- and middle-income countries (LMICs), as well as rural areas of wealthier nations as monitors tend to be located in large metropolises. Low cost sensors (LCS) for measuring air pollution and identifying sources offer a possible path forward to remedy the lack of data, though significant knowledge gaps and caveats remain regarding the accurate application and interpretation of such devices.</p><p>The Clean Air Monitoring and Solutions Network (CAMS-Net) establishes an international network of networks that unites scientists, decision-makers, city administrators, citizen groups, the private sector, and other local stakeholders in co-developing new methods and best practices for real-time air quality data collection, data sharing, and solutions for air quality improvements. CAMS-Net brings together at least 32 multidisciplinary member networks from North America, Europe, Africa, and India. The project establishes a mechanism for international collaboration, builds technical capacity, shares knowledge, and trains the next generation of air quality practitioners and advocates, including domestic and international graduate students and postdoctoral researchers. </p><p>Here we present some preliminary research accelerated through the CAMS-Net project. Specifically, we present LCS calibration methodology for several co-locations in LMICs (Accra, Ghana; Kampala, Uganda; Nairobi, Kenya; Addis Ababa, Ethiopia; and Kolkata, India), in which reference BAM-1020 PM2.5 monitors were placed side-by-side with LCS. We demonstrate that both simple multiple linear regression calibration methods for bias-correcting LCS and more complex machine learning methods can reduce bias in LCS to close to zero, while increasing correlation. For example, in Kampala, Raw PurpleAir PM2.5 data are strongly correlated with the BAM-1020 PM2.5 (r<sup>2</sup> = 0.88), but have a mean bias of approximately 12 μg m<sup>-3</sup>. Two calibration models, multiple linear regression and a random forest approach, decrease mean bias from 12 μg m<sup>-3 </sup>to -1.84 µg m<sup>-3</sup> or less and improve the the r<sup>2</sup> from 0.88 to 0.96. We find similar performance in several other regions of the world. Location-specific calibration of low-cost sensors is necessary in order to obtain useful data, since sensor performance is closely tied to environmental conditions such as relative humidity. This work is a first step towards developing a database of region-specific correction factors for low cost sensors, which are exploding in popularity globally and have the potential to close the air pollution data gap especially in resource-limited countries. </p><p> </p><p> </p>


2018 ◽  
Vol 210 ◽  
pp. 03008
Author(s):  
Aparajita Das ◽  
Manash Pratim Sarma ◽  
Kandarpa Kumar Sarma ◽  
Nikos Mastorakis

This paper describes the design of an operative prototype based on Internet of Things (IoT) concepts for real time monitoring of various environmental conditions using certain commonly available and low cost sensors. The various environmental conditions such as temperature, humidity, air pollution, sun light intensity and rain are continuously monitored, processed and controlled by an Arduino Uno microcontroller board with the help of several sensors. Captured data are broadcasted through internet with an ESP8266 Wi-Fi module. The projected system delivers sensors data to an API called ThingSpeak over an HTTP protocol and allows storing of data. The proposed system works well and it shows reliability. The prototype has been used to monitor and analyse real time data using graphical information of the environment.


Author(s):  
Johanna Amalia Robinson ◽  
Rok Novak ◽  
Tjaša Kanduč ◽  
Thomas Maggos ◽  
Demetra Pardali ◽  
...  

Using low-cost portable air quality (AQ) monitoring devices is a growing trend in personal exposure studies, enabling a higher spatio-temporal resolution and identifying acute exposure to high concentrations. Comprehension of the results by participants is not guaranteed in exposure studies. However, information on personal exposure is multiplex, which calls for participant involvement in information design to maximise communication output and comprehension. This study describes and proposes a model of a user-centred design (UCD) approach for preparing a final report for participants involved in a multi-sensor personal exposure monitoring study performed in seven cities within the EU Horizon 2020 ICARUS project. Using a combination of human-centred design (HCD), human–information interaction (HII) and design thinking approaches, we iteratively included participants in the framing and design of the final report. User needs were mapped using a survey (n = 82), and feedback on the draft report was obtained from a focus group (n = 5). User requirements were assessed and validated using a post-campaign survey (n = 31). The UCD research was conducted amongst participants in Ljubljana, Slovenia, and the results report was distributed among the participating cities across Europe. The feedback made it clear that the final report was well-received and helped participants better understand the influence of individual behaviours on personal exposure to air pollution.


Sign in / Sign up

Export Citation Format

Share Document