scholarly journals Comparison of Passive Sonar Narrowband Detection and Wideband Detection Performance

2021 ◽  
Vol 8 (8) ◽  
pp. 27-29
Author(s):  
Tianhao Yang ◽  
◽  
Qiming Ma ◽  
Tuo Chen ◽  
◽  
...  

Conventional passive sonar uses wideband beam energy for target detection. In the case of low signal-to-noise ratio and strong target interference, the performance of wideband energy detection is rapidly degraded. In view of the relatively stable line spectrum of the radiated noise of underwater targets, the performance of narrowband detection and wideband detection is considered. In stable line spectrum underwater target detection, narrowband detection has performance advantages over wideband detection. However, its actual performance has disadvantages such as sensitivity to noise frequency bands. In this paper, based on the sonar equation, the theoretical methods of wideband detection and narrowband detection are analyzed and the main factors affecting detection performance are given. Simulation and sea trial data processing results verify the effectiveness of the method.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shanshan Yu ◽  
Ju Liu ◽  
Jing Wang ◽  
Inam Ullah

Spectrum sensing is one of the key technologies in the field of cognitive radio, which has been widely studied. Among all the sensing methods, energy detection is the most popular because of its simplicity and no requirement of any prior knowledge of the signal. In the case of low signal-to-noise ratio (SNR), the traditional double-threshold energy detection method employs fixed thresholds and there is no detection result when the energy is between high and low thresholds, which leads to poor detection performance such as lower detection probability and longer spectrum sensing time. To address these problems, we proposed an adaptive double-threshold cooperative spectrum sensing algorithm based on history energy detection. In each sensing period, we calculate the weighting coefficient of thresholds according to the SNR of all cognitive nodes; thus, the upper and lower thresholds can be adjusted adaptively. Furthermore, in a single cognitive node, once the current energy is within the high and low thresholds, we utilize the average energy of history sensing times to rejudge. To ensure the real-time performance, if the average history energy is still between two thresholds, the single-threshold method will be used for the end decision. Finally, the fusion center aggregates the detection results of each node and obtains the final cooperative conclusion through “or” criteria. Theoretical analysis and simulation results show that the algorithm proposed in this paper improved detection performance significantly compared with the other four different double-threshold algorithms.


2021 ◽  
Vol 13 (9) ◽  
pp. 1703
Author(s):  
He Yan ◽  
Chao Chen ◽  
Guodong Jin ◽  
Jindong Zhang ◽  
Xudong Wang ◽  
...  

The traditional method of constant false-alarm rate detection is based on the assumption of an echo statistical model. The target recognition accuracy rate and the high false-alarm rate under the background of sea clutter and other interferences are very low. Therefore, computer vision technology is widely discussed to improve the detection performance. However, the majority of studies have focused on the synthetic aperture radar because of its high resolution. For the defense radar, the detection performance is not satisfactory because of its low resolution. To this end, we herein propose a novel target detection method for the coastal defense radar based on faster region-based convolutional neural network (Faster R-CNN). The main processing steps are as follows: (1) the Faster R-CNN is selected as the sea-surface target detector because of its high target detection accuracy; (2) a modified Faster R-CNN based on the characteristics of sparsity and small target size in the data set is employed; and (3) soft non-maximum suppression is exploited to eliminate the possible overlapped detection boxes. Furthermore, detailed comparative experiments based on a real data set of coastal defense radar are performed. The mean average precision of the proposed method is improved by 10.86% compared with that of the original Faster R-CNN.


2021 ◽  
Vol 13 (4) ◽  
pp. 701 ◽  
Author(s):  
Binbin Wang ◽  
Hao Cha ◽  
Zibo Zhou ◽  
Bin Tian

Clutter cancellation and long time integration are two vital steps for global navigation satellite system (GNSS)-based bistatic radar target detection. The former eliminates the influence of direct and multipath signals on the target detection performance, and the latter improves the radar detection range. In this paper, the extensive cancellation algorithm (ECA), which projects the surveillance channel signal in the subspace orthogonal to the clutter subspace, is first applied in GNSS-based bistatic radar. As a result, the clutter has been removed from the surveillance channel effectively. For long time integration, a modified version of the Fourier transform (FT), called long-time integration Fourier transform (LIFT), is proposed to obtain a high coherent processing gain. Relative acceleration (RA) is defined to describe the Doppler variation results from the motion of the target and long integration time. With the estimated RA, the Doppler frequency shift compensation is carried out in the LIFT. This method achieves a better and robust detection performance when comparing with the traditional coherent integration method. The simulation results demonstrate the effectiveness and advantages of the proposed processing method.


2021 ◽  
Vol 13 (4) ◽  
pp. 594
Author(s):  
Rui Wang ◽  
Yiming Zhang ◽  
Weiming Tian ◽  
Jiong Cai ◽  
Cheng Hu ◽  
...  

Entomological radars are important for scientific research of insect migration and early warning of migratory pests. However, insects are hard to detect because of their tiny size and highly maneuvering trajectory. Generalized Radon–Fourier transform (GRFT) has been proposed for effective weak maneuvering target detection by long-time coherent detection via jointly motion parameter search, but the heavy computational burden makes it impractical in real signal processing. Particle swarm optimization (PSO) has been used to achieve GRFT detection by fast heuristic parameter search, but it suffers from obvious detection probability loss and is only suitable for single target detection. In this paper, we convert the realization of GRFT into a multimodal optimization problem for insect multi-target detection. A novel niching method without radius parameter is proposed to detect unevenly distributed insect targets. Species reset and boundary constraint strategy are used to improve the detection performance. Simulation analyses of detection performance and computational cost are given to prove the effectiveness of the proposed method. Furthermore, real observation data acquired from a Ku-band entomological radar is used to test this method. The results show that it has better performance on detected target amount and track continuity in insect multi-target detection.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3270 ◽  
Author(s):  
Baris Satar ◽  
Gokhan Soysal ◽  
Xue Jiang ◽  
Murat Efe ◽  
Thiagalingam Kirubarajan

Conventional methods such as matched filtering, fractional lower order statistics cross ambiguity function, and recent methods such as compressed sensing and track-before-detect are used for target detection by passive radars. Target detection using these algorithms usually assumes that the background noise is Gaussian. However, non-Gaussian impulsive noise is inherent in real world radar problems. In this paper, a new optimization based algorithm that uses weighted l 1 and l 2 norms is proposed as an alternative to the existing algorithms whose performance degrades in the presence of impulsive noise. To determine the weights of these norms, the parameter that quantifies the impulsiveness level of the noise is estimated. In the proposed algorithm, the aim is to increase the target detection performance of a universal mobile telecommunication system (UMTS) based passive radars by facilitating higher resolution with better suppression of the sidelobes in both range and Doppler. The results obtained from both simulated data with α stable distribution, and real data recorded by a UMTS based passive radar platform are presented to demonstrate the superiority of the proposed algorithm. The results show that the proposed algorithm provides more robust and accurate detection performance for noise models with different impulsiveness levels compared to the conventional methods.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2742
Author(s):  
Yuwei Ge ◽  
Tao Zhang ◽  
Haihua Liang ◽  
Qingfeng Jiang ◽  
Dan Wang

Image steganalysis is a technique for detecting the presence of hidden information in images, which has profound significance for maintaining cyberspace security. In recent years, various deep steganalysis networks have been proposed in academia, and have achieved good detection performance. Although convolutional neural networks (CNNs) can effectively extract the features describing the image content, the difficulty lies in extracting the subtle features that describe the existence of hidden information. Considering this concern, this paper introduces separable convolution and adversarial mechanism, and proposes a new network structure that effectively solves the problem. The separable convolution maximizes the residual information by utilizing its channel correlation. The adversarial mechanism makes the generator extract more content features to mislead the discriminator, thus separating more steganographic features. We conducted experiments on BOSSBase1.01 and BOWS2 to detect various adaptive steganography algorithms. The experimental results demonstrate that our method extracts the steganographic features effectively. The separable convolution increases the signal-to-noise ratio, maximizes the channel correlation of residuals, and improves efficiency. The adversarial mechanism can separate more steganographic features, effectively improving the performance. Compared with the traditional steganalysis methods based on deep learning, our method shows obvious improvements in both detection performance and training efficiency.


An efficient bandwidth allocation and dynamic bandwidth access away from its previous limits is referred as cognitive radio (CR).The limited spectrum with inefficient usage requires the advances of dynamic spectrum access approach, where the secondary users are authorized to utilize the unused temporary licensed spectrum. For this reason it is essential to analyze the absence/presence of primary users for spectrum usage. So spectrum sensing is the main requirement and developed to sense the absence/ presence of a licensed user. This paper shows the design model of energy detection based spectrum sensing in frequency domain utilizing Binary Symmetric Channel (BSC) ,Additive white real Gaussian channel (AWGN), Rayleigh fading channel users for 16-Quadrature Amplitude Modulation(QAM) which is utilized for the wide band sensing applications at low Signal to noise Ratio(SNR) level to reduce the false error identification. The spectrum sensing techniques has least computational complexity. Simulink model for the energy detection based spectrum sensing using frequency domain in MATLAB 2014a.


Sign in / Sign up

Export Citation Format

Share Document