scholarly journals A Review on Compressive Strength of Concrete Containing Waste Cathode Ray Tube Glass as Aggregates

2021 ◽  
Vol 1 (1) ◽  
pp. 1-14
Author(s):  
Nurul Noraziemah Mohd Pauzi

The issue of the cathode ray tube (CRT) technology facing its end-of-time and increasing quantities across the globe has acquired the responsiveness of many researchers. The use of waste CRT glass as a construction material has fascinated them due to its significant advantage in recycling the hazardous and non-biodegradable waste CRT glass. However, lack of knowledge about the effects and features of CRT glass as a construction material could be a hindrance to the excessive utilization of waste CRT glass. Therefore, in order to establish the idea of using CRT waste glass as a more common construction material, this paper reviews several recycling techniques of CRT glass and further detail on the workability, density, and compressive strength properties of concrete and mortar using CRT glass (treated or untreated) as fine aggregates. The review showed that, generally, the use of CRT glass as a complete or partial replacement of natural sand shows a slight increase in density, workability, and concrete strength compared to conventional concrete. However, there are no clear trends that can be concluded as this review also showed that various factors influenced its performance, such as percentage replacement, particle size, lead (Pb) content, and types of admixtures.

Concrete is a material which widely used in construction industry. The present investigation deals with the study of partial replacement of fine aggregate by Nylon Glass Granules in concrete. The fine aggregates are replaced by 0%, 10%, 20% and 30% by Nylon Glass Granules by volume of natural sand in M35 grade of concrete. Additionally, to increase the tensile strength of concrete 1% of Steel Fiber by volume of cement were added to all the mixes containing Nylon Glass Granules. The concrete produced by such ingredients were cured for 7 and 28 days to evaluate its hardened properties. The 28days hardened properties of concrete revealed that maximum strength is observed for the mix which possesses 20% replacement of fine aggregate by Nylon Glass Granules compared with the conventional concrete, thus it is said to be the optimum mix


Author(s):  
P. Subathra ◽  
Binil Varghese ◽  
Muhammed Jamsheed K. P ◽  
Muzammil T. H

Since the building made of cement concrete consumes almost half of the total energy generated and accordingly accountable for huge amount of CO2 emission, it is necessary to replace the Portland cement (PC) with sustainable construction material. Similarly, Prosopis Juliflora is a shrub or small tree in the family Fabaceae, a kind of mesquite which is considered to be a potential threat for ground water in South India. Hence, this has to eradicate so as to maintain the groundwater and also to effectively utilize its ash thereby reducing environmental pollution, this can be used as a partial replacement for cement. In this regard, this paper investigates the technical feasibility of using Prosopis Juliflora ash (PJA) as cementitious material by partially (5%, 10% and 15%) replacing cement by Prosopis Juliflora ash. The mixes were evaluated for their fresh, physical and strength properties such as workability, density and compressive strength and the results were compared with the conventional mix. In order to save the environment and to save the resources we have come up with using the Prosopis Juliflora (Semai-Karuvelam in Tamil) ash as the partial replacement of cement. Cement will produce equal amount of greenhouse gas (co2) which increase the global warming. As the amount of cement is reduced greenhouse gases also reduced. Utilization of Juliflora ash as a partial substitution for cement is one of the promising methods to increase the strength and thermal insulation for cement blocks. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended Prosopis Juliflora cement are evaluated.


Author(s):  
P. A. Prabakaran ◽  
Satheesh Kumar KRP ◽  
Janani G

Since the building made of cement concrete consumes almost half of the total energy generated and accordingly accountable for huge amount of CO2 emission, it is necessary to replace the Portland cement (PC) with sustainable construction material. Similarly, Prosopis Juliflora is a shrub or small tree in the family Fabaceae, a kind of mesquite which is considered to be a potential threat for ground water in South India. Hence, this has to eradicate so as to maintain the groundwater and also to effectively utilize its ash thereby reducing environmental pollution, this can be used as a partial replacement for cement. In this regard, this paper investigates the technical feasibility of using Prosopis Juliflora ash (PJA) as cementitious material by partially (5%, 10% and 15%) replacing cement by Prosopis Juliflora ash. The mixes were evaluated for their fresh, physical and strength properties such as workability, density and compressive strength and the results were compared with the conventional mix. In order to save the environment and to save the resources we have come up with using the Prosopis Juliflora (Semai-Karuvelam in Tamil) ash as the partial replacement of cement. Cement will produce equal amount of greenhouse gas (co2) which increase the global warming. As the amount of cement is reduced greenhouse gases also reduced. Utilization of Juliflora ash as a partial substitution for cement is one of the promising methods to increase the strength and thermal insulation for cement blocks. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended Prosopis Juliflora cement are evaluated.


Author(s):  
Giuliana Scuderi

The construction industry is the largest global consumer of materials, among which sand plays a fundamental role; now the second most used natural resource behind water, sand is the primary component in concrete. However, natural sand production is a slow process and sand is now consumed at a faster pace than it’s replenished. One way to reduce consumption of sand is to use alternative materials in the concrete industry. This paper reports the exploratory study on the suitability of aquaculture byproducts as fine aggregates in concrete mixtures. Seashell grit, seashell flour and oyster flour were used as sand replacements in concrete mixtures (10%, 30% and 50% substitution rates). All the mixtures were characterized in fresh and hardened states (workability, air content, compressive strength and water absorption). Based on compressive strength, measured at 7 and 28 days, seashell grit provided the most promising results: the compressive strength was found to be larger than for conventional concrete. Moreover, the compressive strength of the cubes was larger, when larger percentages of seashell grit were used, with the highest value obtained for 50% substitution. However, for oyster flour and seashell flour, only 10% sand substitution provided results comparable with the control mixture. For the three aggregates, workability of concrete decreases with fineness modulus decrease. For mixtures in which shell and oyster flour were used with 30% and 50% substitution percentages, it was necessary to increase the quantity of mixing water to allow a minimal workability. In conclusion, considering the promising results of the seashell grit, it is suggested to study further the characteristic of the material, also considering its environmental and physical properties, including acoustic and thermal performances. Higher substitution percentages should also be investigated. This research adds to the relevant literature in matter of biobased concrete, aiming at finding new biobased sustainable alternatives in the concrete industry.


Author(s):  
Sophía Moncerrat Alvarado Mera ◽  
Andy Gabriel Vélez Soledispa ◽  
Wilter Enrique Ruiz Párraga ◽  
Eduardo Humberto Ortiz Hernández ◽  
César Mauricio Jarre Castro

  El hormigón obtenido a partir de vidrio finamente molido es una línea de investigación a nuevos materiales, basados en el ahorro del cemento y a su vez en la disminución del dióxido de carbono a la atmósfera para obtener un material constructivo más eficiente y sostenible. Con el propósito de buscar una solución para la fabricación de hormigones, la utilización del vidrio finamente molido como reemplazo parcial del cemento es una de las alternativas para integrarlo al proceso constructivo, cuyo objetivo es disminuir el empleo de materias primas no renovables, utilizando materiales reciclados con excelentes características de resistencia y durabilidad. En la presente investigación se estudió la resistencia a compresión del hormigón, usando vidrio finamente molido, sustituyéndolo en porcentajes del 5%, 10% y 15% en reemplazo parcial del cemento. Se elaboraron probetas de hormigón convencional y probetas de hormigón con adición de vidrio finamente molido, a cada probeta experimentada se le realizó el ensayo de resistencia a compresión del hormigón en un tiempo máximo de curado húmedo de 56 días. Se realizó la comparación entre el hormigón sin adición y el hormigón con porcentajes de vidrio finamente molido, llegando a la conclusión que el vidrio sustituido al 15% como reemplazo parcial del cemento disminuye su resistencia a compresión.   Palabras claves — vidrio finamente molido, resistencia a compresión, hormigón, adición, cemento.   Abstract  The concrete obtained from finely ground glass is a line of investigation to new materials, based on the saving of cement and in turn on the reduction of carbon dioxide to the atmosphere to obtain a more efficient and sustainable construction material. In order to find a solution for the manufacture of concrete, the use of finely ground glass as a partial replacement of cement is one of the alternatives to integrate it into the construction process, whose aim is to reduce the use of non-renewable raw materials, using recycled materials with excellent strength and durability characteristics. In this research, the compressive strength of concrete was studied, using finely ground glass, replacing it in percentages of 5%, 10% and 15% in partial replacement of cement. Conventional concrete test pieces and concrete test pieces with the addition of finely ground glass were produced and each tested test piece was tested for the compressive strength of the concrete within a maximum curing time of 56 days A comparison was made between aggregate concrete and concrete with finely ground glass percentages, concluding that glass replaced at 15% as a partial replacement for cement decreases its compressive strength.   Index Terms — finely ground glass, compressive strength, concrete, addition, cement.


Author(s):  
Adetoye T. Oyebisi ◽  
Cordelia O. Osasona

This research studied strength-characteristics of concrete using waste tyre-rubber as partial replacement for coarse aggregate in concrete construction and compares the results to those of conventional concrete. The specimens were produced with percentage replacements of the coarse aggregate by 5%, 10% and 15 % of rubber aggregate. A control mix with no replacement of the coarse aggregate was produced, to make a comparative analysis. The samples consisted of concrete cubes, cylinders and beams. Various tests (such as slump, compressive strength, splitting tensile strength and flexural strength tests), were conducted. Data-collection was mainly based on the results of the tests conducted on the specimens in the laboratory. The results show that there is a reduction in the compressive strength of the concrete, due to the inclusion of rubber aggregates. Compressive strength losses of 12.69%, 17.75% and 25.33% were noticed for 5%, 10%, 15% replacement of coarse aggregate, respectively; tensile strength losses of 13.01%, 20.12%, and 24.76% were observed, respectively, when 5%, 10%, 15% of the coarse aggregate was replaced, after 28 days of curing; -0.1%, -0.15% and 0.2% decrease in flexural strength was observed for 5%, 10% and 15% replacement, respectively, after curing for 28 days. Rubberised concrete was found to have some desirable characteristics (such as lower density, enhanced ductility, and a slight increase in flexural strength in the lower compressive strength concrete categories). The overall results show that it is possible to use recycled rubber tyres in concrete construction, as a partial replacement for coarse aggregates. Nevertheless, the percentage of replacement should be limited to 10% (which ensures the strength of the concrete is kept within the required range), and the application should be restricted to particular cases where the properties related to the replacement with the rubber aggregates clearly indicate an improvement on conventional concrete, and so are desirable.


2018 ◽  
Vol 64 (1) ◽  
pp. 117-131 ◽  
Author(s):  
K.V.S.Gopala Krishna Sastry ◽  
A. Ravitheja ◽  
T.Chandra Sekhara Reddy

Abstract Foundry sand waste can be utilized for the preparation of concrete as a partial replacement of sand. The strength properties of M25 grade concrete are studied with different percentages of replacement of fine aggregates by foundry sand at 0%, 10%, 20%, 30%, 40%, and 50%. The optimum percentage of foundry sand replacement in the concrete corresponding to maximum strength will be identified. Keeping this optimum percentage of foundry sand replacement as a constant, a cement replacement study with mineral admixtures such as silica fume (5%, 7.5%, 10%) and fly ash (10%, 15%, 20%,) is carried out separately. The maximum increase in strength properties as compared to conventional concrete was achieved at 40% foundry sand replacement. Test results indicated that a 40% replacement of foundry sand with silica fume showed better performance than that of fly ash. The maximum increase in strengths was observed in a mix consisting of 40% foundry sand and 10% silica fume. SEM analysis of the concrete specimens also reveals that a mix with 40% foundry sand and 10% silica fume obtained the highest strength properties compared to all other mixes due to the creation of more C-H-S gel formations and fewer pores.


2019 ◽  
Vol 8 (3) ◽  
pp. 2490-2492

The by-products generated from milling industries are iron powders which are harmful resources to human health since they are in the air and can be straightforwardly breathe in. To prevail over this setback we have to dispose the iron powder safely without any environmental hazards. As a result, consumption on iron powder in the concrete has been developed. This study made an attempt to make utilize iron powder waste as a part substitution of Portland cement in M25 grade concrete mix by the volume of fraction in the range of 0%, 1%, 2%, 3% and 4%. The compressive strength test was conducted for the various mix proportions and the achieved strength properties were compared with those of conventional concrete after 28 days. However, the effect of iron powder with 2% partial replacement of cement exhibit an maximum improvement in compressive strength of about 29.80% when compared to that of conventional concrete.


2019 ◽  
Vol 8 (4) ◽  
pp. 4299-4305 ◽  

This paper reveals mainly about the prime effects of using fly ash, and activated fly ash which is considered to replace cement in concrete, on the concrete strength. For this reason, proper experiments has been done in the lab to investigate the behavior of fly ash and activated fly ash ratio on the strength and workability parameters of concrete. The compressive strength of concrete specimens with replacement ratios of 30% and 40% 50%, and aged 7 and 28 days are measured for M30 as per IS 10262 2009 grade of concrete and are compared with those of the concrete specimens without fly ash. The results shown that strength of partially replaced cement by activated fly ash in concrete enhanced strength is observed and it is slow but strong and continuous process when compared to the concrete without fly ash. And optimum replacement of fly ash ratio can be found out at the maximum compressive tensile and flexural strength of concrete. The main aim of this paper is to study the strength properties of concrete with fly ash and activated fly ash. And compare the results and opt for the best replacement to eliminate more use of cement in concrete.


2021 ◽  
Vol 13 (14) ◽  
pp. 7575
Author(s):  
Liyun Cui ◽  
Liang Wang ◽  
Ying Xu ◽  
Xing Lou ◽  
Hao Wang

This study aims to realize the resource regeneration application of copper tailing (as fine aggregates for partial replacement of natural fine aggregates), which avoid environmental pollution due to many landfills of copper tailings. The compressive strength and durability (dry shrinkage and sulfate attack) tests were carried out to evaluate the effect of copper tailings replacement on the performance of mortar. The results show that the mortar with copper tailings has higher compressive strength than the one with natural sand. More than 14% improvement in compressive strength can be achieved by adding copper tailings with no more than 40% replacement level. The dry shrinkage of mortar was increased with the copper tailings due to the increase of micro pores in mortar by using copper tailings. Compared with the mortar with natural sand, the dry shrinkage can be reduced by adding copper tailings with no more than 20% replacement level. The sulfate attack resistance is improved by using copper tailings, when the replacement rate is more than 20%. In fact, the micro-aggregate filler effect of copper tailings effectively refines the pore structure and forms more stable, uniform and fine interface micro pores, which is of vital significance for mortar to resist external forces and sulfate ion erosion. However, copper tailings, as a porous material, have water release characteristics in cement mortar. This characteristic is not conducive to the filler effect, which decreases the filling rate in later hydration, leading to higher porosity of copper tailings mortar. More importantly, mortar can solidify heavy metals in copper tailings, which prevents loss of heavy metal such as Cu, Zn, Sr, Zr, As, Ga due to environmental problems.


Sign in / Sign up

Export Citation Format

Share Document