scholarly journals Results of laboratory and bench-scale studies of seed dispensers with an electric drive of working tools

2021 ◽  
Vol 34 (06) ◽  
pp. 1761-1767
Author(s):  
Anatoly Ivanovich Zavrazhnov ◽  
Aleksandr Vladimirovich Balashov ◽  
Sergey Petrovich Strygin ◽  
Nikita Yurievich Pustovarov ◽  
Andrey Anatolyevich Zavrazhnov

Mechanical and pneumatic seed drills of both domestic and foreign production are used in Russian farms. They are equipped with a mechanical drive of working tools and an electronic seeding control system. Due to the slipping of the wheels or the breakage of the chains, the sowing of seeds in individual seed dispensers interrupts. According to the results of laboratory and bench-scale studies in respect to soybean seeds, the required power for the electric drive of one seed dispenser was determined, which, depending on the disk rotation speed from 10 to 60 rpm, ranged from 30 to 120 W. By calculation, using the analytical expression, the power, required for the fan drive of a 12-row seed drill, was determined, which, depending on the disk rotation speed, ranged from 1.6 to 2.47 kW. A condition is formulated, which will eliminate the probability of shifting and rolling seeds along the furrow after their fall out of the sowing disc rotating in the opposite direction to the movement of the seeder unit, provided correspondence of the linear speed of the sowing disc and the speed of the seeder unit (the effect of zero overlaps). In this case, the trajectory length of the seeds falling to the furrow should be consistent with the speed of the seeder unit and the seeding rate according to the proposed expression.

1995 ◽  
Vol 62 (3) ◽  
pp. 764-771 ◽  
Author(s):  
F. Y. Huang ◽  
C. D. Mote

The instability mechanisms of a rotating disk, coupled to a rigid surface through a viscous fluid film at the interface, are investigated analytically. The fluid in the film is driven circumferentially by the viscous shear, and it flows outwards radially under centrifugal forces. The circumferential flow component creates an equivalent viscous damping rotating at one half the disk rotation speed. This film damping dissipates all backward traveling waves where the undamped wave speeds are greater than one half the disk rotation speed. The radial flow component creates a nonsymmetric stiffness in the disk-film system that energizes any wave mode at rotation speeds above its flutter speed. Instabilities in the disk-film system are of two types. A rotating damping instability is caused by the rotating film damping at rotation speeds above a critical value that is less than the flutter speed. A combination instability is caused by the combined effect of the film stiffness and damping at rotation speeds above a threshold that is greater than the flutter speed. The maximum rotation speed of stable disk vibration is bounded above by the lowest onset speed of rotating damping instability. This speed limit is predicted for two wall enclosure designs. The maximum stable rotation speed of a 5.25-inch diameter flexible, memory disk, separated from a rigid surface by a viscous air film, is shown to be more than 15 times greater than the maximum speed of the disk without the air film.


Author(s):  
Nikhit N. Nair ◽  
Grant M. Warner

In this paper, a hydrodynamically coupled flexible disk rotating in a thin housing is mathematically modeled and an attempt is made to explain the jump instability phenomenon that occurs when the disk rotation speed is varied slightly. The disk is assumed to have an initial warped profile due to slight imperfections in the manufacturing process. After non-dimensionalization of the participating variables, a hybrid formulation is carried out. Radial flows above and below the disk are taken into consideration. The deflection and pressure equations form a coupled system, and a solution is attempted using the shooting method. The deflections obtained are plotted to obtain the deflected disk profile and appropriate conclusions are drawn.


2019 ◽  
Vol 126 ◽  
pp. 00008
Author(s):  
Vladimir Nemtinov ◽  
Nikolai Kryuchin ◽  
Alexandr Kryuchin ◽  
Yulia Nemtinova

In this paper, it is proposed to use a self-propelled pneumatic mini-seeder with replaceable mechanical sowing devices designed and manufactured using computer technologies, advanced software and threedimensional printing for seeds selection. As a result of the research, hightech operating devices for a grain-drill feed with screw and disk-pin continuous seed metering are designed and manufactured. Grain-drill feeds allow sowing of free-flowing and non-free-flowing seeds, when used as seed meters on self-propelled pneumatic mini-seeders for selection sowing of grass seeds. Analysis of laboratory results of and field studies of the proposed grain-drill feeds allowed to determine the qualitative indicators of their performance: at a disk rotation speed of up to 15 rpm a linear dependence of the seed supply on the rotation frequency is provided; in the field studies, the instability of bluegrass seeding did not exceed 8%. The highest performance of the screw is obtained at the angle of choke inclination of 30...35 degrees with the seeding instability indicator of 2.5...3.5%. The developed grain-drill feed will significantly reduce the range of seeders and expand the set of sown seeds of various agricultural plants with one brand of a grain-drill feed.


Author(s):  
Sheng Wang ◽  
Yanhong Sun ◽  
Chen Yang ◽  
Yongchang Yu

In the existing soybean breeding and planting machinery, the power source of the metering device adopts the ground wheel transmission method mostly. However, this power transmission method is likely to cause slippage during the planting operation, which will cause problems such as the increase of the missed seeding index and the increase of the coefficient of plant spacing. It is not conducive for scientific researchers to carry out breeding operations. Aiming at this problem, an electronically controlled soybean seeding system is designed, and the power of the seed metering device is derived from the motor. In order to improve the control accuracy of the electronically controlled seeding system, the precise control of the soybean seeding rate is finally realized. The electric drive soybean seeding system adopts closed-loop control, the motor model of the electric drive seeding system is established, and the transfer function of the motor is obtained. PID control based on a genetic algorithm is adopted, and the corresponding parameters are substituted into the control system simulation model established in MATLAB/SIMULINK. Field verification tests have been carried out on the conventional fuzzy PID control system and the electric drive soybean planter of the fuzzy PID control system based on a genetic algorithm. The result showed that the average of the repeat-seeding parameter is 1.30% better than the average of conventional seeding system (1.40%), the average of the miss-seeding parameter is 1.08% better than the average of conventional seeding system (2.09%) and the average of row-spacing variation parameter is 2.79% better than the average of conventional seeding system (2.34%). In conclusion, the new seeding system is robust obviously. Field trial results show that seeding with Genetic Algorithm Fuzzy control is better.


Author(s):  
D.V. Korolev ◽  
◽  
Yu.V. Stolyankov ◽  
V.P. Piskorsky ◽  
R.A. Valeev ◽  
...  

The article provides the analysis of PrDyFeCoB magnetic microstripes prepared by extracting material from a melt on a rotating cooling disk. The phases 2-14-1, 1-4-1 and 1-2, α-FeСо were verified in the samples. The division of a hysteresis loop into two strands shows that the coercive field of the α-FeСо phase (500–700 Oe) determines the width of the hysteresis loop near the zero field, while the coercive field of the 2-14-1 phase (10 kOe) corresponds to lateral hysteresis loops. The saturation magnetization increases by 25% with an increase in the disk rotation speed by 3 times together with correspondent acceleration of the cooling rate. This is due to the increase in the proportion of the soft magnetic phase α-FeCo and the increase in the proportion of the amorphous phase with a decrease in the proportion of the main magnetic phase 2-14-1. Strip domains and their dynamics during magnetization were detected using Kerr magneto-optical microscopy.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 601
Author(s):  
Alan Delon Andrade ◽  
Gabriel Araújo e Silva Ferraz ◽  
Murilo Machado de Barros ◽  
Rafael De Oliveira Faria ◽  
Fábio Moreira da Silva ◽  
...  

Considering the impact of fertilizers on coffee production costs, the search for greater efficiency in the use of these inputs has an important role. Accordingly, the aim of the present study is to evaluate the transverse distribution of fertilizer by a centrifugal spreader in a coffee plantation and to compare two operating modes: fertilizer application on one side (FA1), or both sides (FA2) of the coffee plants. In addition, three doses (200, 300 and 400 kg ha−1) of monoammonium phosphate and three spreading disk rotation speeds (240, 375 and 750 rpm) were tested. To characterize fertilizer distribution profiles, collectors were placed under the canopy of coffee plants, and the collected fertilizer was weighed. From the data obtained, distribution profile histograms were constructed, and coefficients of variation were calculated for each treatment. Distribution profiles with higher uniformity were related to the morphologic characteristics of the coffee plants. Regarding the operating modes evaluated, FA1 presented better results with a disk rotation speed of 750 rpm (FA1-W3); FA2 produced the best results with a disk rotation speed of 240 rpm. By relating these results with information on root morphology, FA1-W3 was found to be the most appropriate application method.


Author(s):  
Igor' Polyuschenkov

The materials on the development of asynchronous electric drive with scalar control are given. The technical solutions associated with the design of software and hardware parts of the microprocessor control system are described. When developed, tools of model-based programming technique are used.


2015 ◽  
Vol 738-739 ◽  
pp. 935-940 ◽  
Author(s):  
Zhen Li ◽  
Pei Xu ◽  
Yu Ping Ouyang ◽  
Shi Lei Lv ◽  
Qiu Fang Dai

In order to reduce operation risk and working intensity in mountainous orchard transportation and to realize optimized control for the mountainous orchard electric-drive monorail transportation system, a mountainous orchard electric-drive monorail transporter control system was designed and developed in this study. The system mainly consists of modules as: manual and remote control, positioning, obstacle avoidance, speed measurement, motor control, electric-magnetic break, and the position limit. The driving speed, current consumption, break control, and battery pack running ability experiments were conducted to test the control system. Results indicated that, the transporter’s driving speed is 0.60~0.58 m/s when it is running on the ground with the load weight from 0 to 100kg. This speed is little affected by the load weight. The transporter’s driving speed is 0.45~0.28 m/s when it is climbing a steep hill with an angle of 39°. That speed is critically affected by the load weight. In further improvements, a shift mechanism will be introduced so that adjustable gear ratio could be achieved thus solve the current overload problem in a full load situation.


Sign in / Sign up

Export Citation Format

Share Document