scholarly journals SUBSEA MULTIPHASE PUMPING SYSTEM X GAS LIFT: AN EXERGO-ECONOMIC COMPARISON

2004 ◽  
Vol 3 (2) ◽  
Author(s):  
C. Y. Nakashima ◽  
S. Oliveira Jr. ◽  
E. F. Caetano

This paper presents a methodology for an exergetic comparison between two artificial lift systems: a gas lift and a twin-screw multiphase pump system, and a standalone offshore platform. A software (Hysys.Process v2.1) was used to simulate an offshore platform with the artificial lift methods and calculate all properties (including exergy) of the material and energy streams. The twin-screw multiphase pump behavior was simulated with a thermodynamic model developed recently (NAKASHIMA (2000) and NAKASHIMA, OLIVEIRA and CAETANO (2002)). The operational conditions of the PETROBRAS 7- MRL-72D-RJS well operating with cited systems were predicted by an internal study conducted in PETROBRAS (BARUZZI et al. (2001a) and partially published in BARUZZI et al. (2001b)). The comparisons cover the range of 2000 to 2020, the same range adopted in the study. Results show that in general the production costs are lower when the multiphase pump is used. The main advantages of this method over the gas lift is the absence of material (gas) recycle and a better energy management.

2004 ◽  
Vol 3 (2) ◽  
pp. 107 ◽  
Author(s):  
C. Y. Nakashima ◽  
S. Oliveira Jr. ◽  
E. F. Caetano

This paper presents a methodology for an exergetic comparison between two artificial lift systems: a gas lift and a twin-screw multiphase pump system, and a standalone offshore platform. A software (Hysys.Process v2.1) was used to simulate an offshore platform with the artificial lift methods and calculate all properties (including exergy) of the material and energy streams. The twin-screw multiphase pump behavior was simulated with a thermodynamic model developed recently (NAKASHIMA (2000) and NAKASHIMA, OLIVEIRA and CAETANO (2002)). The operational conditions of the PETROBRAS 7- MRL-72D-RJS well operating with cited systems were predicted by an internal study conducted in PETROBRAS (BARUZZI et al. (2001a) and partially published in BARUZZI et al. (2001b)). The comparisons cover the range of 2000 to 2020, the same range adopted in the study. Results show that in general the production costs are lower when the multiphase pump is used. The main advantages of this method over the gas lift is the absence of material (gas) recycle and a better energy management.


Author(s):  
Ove F. Jahnsen ◽  
John Yardley ◽  
Geoff High ◽  
Brede Thorkilsen

Abstract This paper describes Kvaerner’s prototype subsea multiphase pump system and the DEMO 2000 development program (current test completion date 2nd Q2001). Reference is also made to service proven sub-systems, components and subsea expertise incorporated into the pump module and system design. Availability and reliability consideration together with novel plans for the future is presented. The Subsea Multiphase Pump and motor are packaged into a modular system solution that is readily adaptable to template and manifold configurations and maximises the use of existing qualified components and sub-systems. A guidewireless system is adopted and Kvaerner’s design ensures self-alignment upon installation at simple flowbase interfaces, making it ideal for deepwater applications. Due to the individual 40 tonne weight, and moonpool dimensions, of both flow base and pump module, light monohull vessels can be utilised to execute installation and retrieval. The pump unit is Bornemann twin-screw design, service proven and modified for subsea use up to 2000-meter water depth, driven by an oil-filled Loher electric motor that provides efficient power with corresponding low weight. Some main pump features are flexible operation covering all gas-liquid ratios together with tolerance for slug flow and some sand. Of particular importance, compared to centrifugal pump designs, the twin-screw volumetric arrangement is able to maintain the pressure boost specification independent of gas content at the pump inlet, and without an upstream mixing tank.


Author(s):  
Celso Y. Nakashima ◽  
Silvio Oliveira ◽  
Elisio F. Caetano

The twin-screw multiphase pump has been studied as an alternative equipment to substitute the conventional system (fluid separation, liquid pumping and gas compression) in petroleum boosting. By “pumping” gas and liquid together, the multiphase pump could reduce production costs, particularly in deepwater activity. This paper presents a thermo-hydraulic model of a twin-screw multiphase pump developed to determine important parameters such as: volumetric efficiency, absorbed power, discharge conditions, heat transfer and pressure and temperature profiles. The continuous movement from suction to the discharge of pump chambers is divided in small discretive steps. This division allows the calculation of energy and mass balances for each screw chamber. At each step, it is possible to calculate mass and energy that enters and leaves one chamber. With this balance, pressure and temperature for the next step can be calculated. Differently from previous model, it considers not only water-air but also hydrocarbon mixtures (including petroleum heavy fractions) as working fluids. Besides, inclusion of screw rotation influence over peripheral backflow is not neglected as in previous models.


Author(s):  
Celso Yukio Nakashima ◽  
Silvio de Oliveira Ju´nior ◽  
Elisio F. Caetano

The twin-screw multiphase pump has been studied as an alternative system to substitute the conventional one (fluid separation, liquid pumping and gas compression) in petroleum boosting. By “pumping” simultaneously gas and liquid, the multiphase pump could reduce production costs in deepwater activities. This paper presents a thermodynamic model of a twin-screw multiphase pump to determine performance parameters such as: absorbed power, discharge conditions and efficiency. To overcome problems with the complex flow field inside of this novel equipment, the multiphase flow was divided into a sequence of simpler processes. Such approach helps determine energy and mass balances and enables the use of a process simulator (Hysys.Process v2.1) to construct the model. The model prediction when compared to the literature show that the assumption of a smooth turbulent flow, considering the pressure loss in the entrance and discharge of the gap, fits better the phenomena than the turbulent flow when calculating the flow through the gaps. In addition, the comparison for absorbed power indicates that the assumption of gaps filled only with liquid is not valid under all operation conditions.


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


2020 ◽  
Vol 14 (2) ◽  
pp. 194-204
Author(s):  
Anuradha Tomar

Background: Despite so many developments, most of the farmers in the rural areas are still dependent on rainwater, rivers or water wells, for irrigation, drinking water etc. The main reason behind such dependency is non-connectivity with the National grid and thus unavailability of electricity. To extract the maximum power from solar photovoltaic (SPV) based system, implementation of Maximum Power Point Tracking (MPPT) is mandatory. PV power is intermittent in nature. Variation in the irradiation level due to partial shading or mismatching phenomena leads to the development of modular DC-DC converters. Methods: A stand-alone Multi-Input Dual-Output (MIDO) DC-DC converter based SPV system, is installed at a farm; surrounded with plants for water pumping with stable flow (not pulsating) along with battery energy storage (BES) for lighting. The proposed work has two main objectives; first to maximize the available PV power under shadowing and mismatching condition in case of series/ parallel connected PV modules and second is to improve the utilization of available PV energy with dual loads connected to it. Implementation of proposed MIDO converter along with BES addresses these objectives. First, MIDO controller ensures the MPPT operation of the SPV system to extract maximum power even under partial shading condition and second, controls the power supplied to the motor-pump system and BES. The proposed system is simulated in MATLAB/ SIMULINK environment. Real-time experimental readings under natural sun irradiance through hardware set-up are also taken under dynamic field conditions to validate the performance. Results and Conclusion: The inherent advantage of individual MPPT of each PV source in MIDO configuration, under varying shadow patterns due to surrounding plants and trees is added to common DC bus and therefore provides a better impact on PV power extraction as compared to conventional PV based water pumping system. Multi-outputs at different supply voltages is another flag of MIDO system. Both these aspects are implemented and working successfully at 92.75% efficiency.


2019 ◽  
Author(s):  
Ahmed Alshmakhy ◽  
Khadija Al Daghar ◽  
Sameer Punnapala ◽  
Shamma AlShehhi ◽  
Abdel Ben Amara ◽  
...  

2021 ◽  
Vol 13 (6) ◽  
pp. 3470
Author(s):  
Przemysław Kowalik ◽  
Magdalena Rzemieniak

The problem of scheduling pumps is widely discussed in the literature in the context of improving energy efficiency, production costs, emissions, and reliability. In some studies, the authors analyze the available case studies and compare the results; others present their own computational methods. In the paper, a problem of pump scheduling in regular everyday operations of a water supply operator is considered. The issues of water production optimization and energy savings are part of the topic of sustainable development. The objective of the article is the minimization of the cost of electric power used by the pumps supplying water. It is achieved thanks to the variability of both the demand for water and the price of electric power during the day combined with the possibility of storing water. The formulation of an existing electric power cost optimization problem as a binary linear programming problem was improved. An essential extension of the above mathematical model, which enables more flexible management of the pump system, was also proposed. An example containing real-world input data was successfully solved using Microsoft Excel with a free OpenSolver add-in.


2013 ◽  
Vol 307 ◽  
pp. 285-289 ◽  
Author(s):  
Wei Wu ◽  
Yu Zhou ◽  
Hang Xin Wei

Aiming at the defects of fault diagnosis in the traditional method for sucker rod pump system, a new method based on support vector machine (SVM) pump fault diagnosis is proposed. Through studying the theory of invariant moment and the shape characteristics of pump indicator diagram, seven invariant moments is extracted from the indicator diagram as a pumping unit well condition of the characteristic parameters. Then these parameters are pretreatment, and it makes up seven eigenvector which are regarded as the input eigenvector of the SVM. The experiment indicates that the method can not only detect the fault of the pumping oil well but also can recognize the fault type of it, which is very effective for safety protection and fault diagnosis of the pumping oil.


Sign in / Sign up

Export Citation Format

Share Document