scholarly journals EVALUATION OF THE APPLICABILITY OF A TURBULENT WAKE INLET BOUNDARY CONDITION

2017 ◽  
Vol 16 (2) ◽  
pp. 78
Author(s):  
P. A. Soliman ◽  
A. V. de Paula ◽  
A. P. Petry ◽  
S. V. Möller

With the objective of reducing the computational cost of the iterative processes of aerodynamic components design, tests were carried out to study under what conditions, and with what difference, only part of the calculation domain can be solved using as input information obtained from complete simulations already solved. An experimental study of an airfoil exposed to the wake interference of an upstream airfoil at a Reynolds number of 150,000 was used to verify the solutions of the Reynolds-Averaged Navier-Stokes equations solved applying the k-ω Shear Stress Transport model for turbulence closure. A Grid Convergence Index study was performed to verify if the solution of the equations for the adopted discretization leads to results within the asymptotic range. With the physical coherence of the numerical methodology verified, comparisons between the simulations with the domain comprising the two airfoils and the domain comprising only the downstream airfoil were performed. Computational time reductions in the order of 40% are observed. The differences in the aerodynamic coefficients for the two types of simulation are presented as a function of distances non-dimensionalized by the characteristic length of the body that disturbs the flow forming the wake, showing that the difference between the two methods was inversely proportional to the distance between the two bodies. Behavior that was maintained until a point where the simulation diverges, equivalent to 25% of the characteristic length of the body that generates the wake.

Author(s):  
M. Sergio Campobasso ◽  
Andreas Piskopakis ◽  
Minghan Yan

The aerodynamic performance of an oscillating wing device to extract energy from an oncoming air flow is here investigated by means of time-dependent turbulent flow simulations performed with a compressible Reynolds-averaged Navier-Stokes research solver using the k–ω Shear Stress Transport model. Previous studies of this device have focused primarily on laminar flow regimes, and have shown that the maximum aerodynamic power conversion can achieve values of about 34 %. The comparative analyses of the energy extraction process in a realistic turbulent flow regime and an ideal laminar regime, reported for the first time in this article, highlight that a) substantial differences of the flow aerodynamics exist between the two cases, b) the maximum efficiency of the device in turbulent conditions achieves values of nearly 40 %, and c) further improvement of the efficiency observed in turbulent flow conditions is achievable by optimizing the kinematic characteristics of the device. The theory underlying the implementation of the adopted compressible turbulent flow solver, and several novel algorithmic features associated with its strongly coupled explicit multigrid integration of the flow and turbulence equations, are also presented.


2015 ◽  
Vol 772 ◽  
pp. 103-107 ◽  
Author(s):  
Sterian Danaila ◽  
Dragoș Isvoranu ◽  
Constantin Leventiu

This paper presents the preliminary results of the numerical simulation of flow and combustion in a one stage turbine combustor (turbine stage in situ combustion). The main purpose of the simulation is to assess the stability of the in situ combustion with respect to the unsteadiness induced by the rotor-stator interaction. Apart from previous attempts, the salient feature of this CFD approach is the new fuel injection concept that consisting of a perforated pipe placed at mid-pitch in the stator row passage. The flow and combustion are modelled by the Reynolds-averaged Navier-Stokes equations coupled with the species transport equations. The chemistry model used herein is a two-step, global, finite rate combustion model while the turbulence model is the shear stress transport model. The chemistry turbulence interaction is described in terms of eddy dissipation concept.


2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
Q Yang ◽  
W Qiu

Slamming forces on 2D and 3D bodies have been computed based on a CIP method. The highly nonlinear water entry problem governed by the Navier-Stokes equations was solved by a CIP based finite difference method on a fixed Cartesian grid. In the computation, a compact upwind scheme was employed for the advection calculations and a pressure-based algorithm was applied to treat the multiple phases. The free surface and the body boundaries were captured using density functions. For the pressure calculation, a Poisson-type equation was solved at each time step by the conjugate gradient iterative method. Validation studies were carried out for 2D wedges with various deadrise angles ranging from 0 to 60 degrees at constant vertical velocity. In the cases of wedges with small deadrise angles, the compressibility of air between the bottom of the wedge and the free surface was modelled. Studies were also extended to 3D bodies, such as a sphere, a cylinder and a catamaran, entering calm water. Computed pressures, free surface elevations and hydrodynamic forces were compared with experimental data and the numerical solutions by other methods.


2001 ◽  
Author(s):  
Masaru Ishizuka ◽  
Guoyi Peng ◽  
Shinji Hayama

Abstract In the present work, an important basic flow phenomena, the natural convection induced flow, is studied numerically. Three-dimensional Navier-Stokes equations along with the temperature equation are solved on the basis of finite difference method. Generalized coordinate system is used so that sufficient grid resolution could be achieved in the body surface boundary layer region. Differential terms with respect to time are approximated by forward differences, diffusions terms are approximated by the implicit Euler form, convection terms in the Navier-Stokes equations are approximated by the third order upwind difference scheme. The heat flux at the body surface of heater is specified. The results of calculation showed a satisfactory agreement with the measured data and led to a good understanding of the overall flow and thermal behavior inside electronic equipment cabinet model which is very difficult, if not impossible, to gather by experiment.


Author(s):  
M Ishizuka ◽  
Y Kitamura

In the present work, an important basic flow phenomenon, natural convection-induced flow, is studied numerically. Three-dimensional Navier-Stokes equations along with the energy equation are solved based on the finite difference method. A generalized coordinate system is used so that sufficient grid resolution could be achieved in the body surface boundary layer region. The results of calculation showed a satisfactory agreement with the measured data and led to a good understanding of the overall flow and thermal behaviour inside an electronic equipment cabinet model, which is very difficult, if not impossible, to gather by experiment.


Author(s):  
Nadeem Ahmed Sheikh ◽  
M. Afzaal Malik ◽  
Arshad Hussain Qureshi ◽  
M. Anwar Khan ◽  
Shahab Khushnood

Flow past a blunt body, such as a circular cylinder, usually experiences boundary layer separation and very strong flow oscillations in the wake region behind the body at a discrete frequency that is correlated to the Reynolds number of the flow. The periodic nature of the vortex shedding phenomenon can sometimes lead to unwanted structural vibrations. The effect of vibrating instability of a single cylinder is investigated in a uniform flow using the power of computational methods. Fluid structure coupling procedure predicts the fluid forces responsible for structural vibrations. An implicit approach to the solution of the unsteady two-dimensional Navier-Stokes equations is used for computation of flow parameters. Calculations are performed in parallel using a domain re-meshing/deforming technique with efficient communication requirements. Results for the unsteady shedding flow behind a circular cylinder are presented with experimental comparisons, showing the feasibility of accurate, efficient, time-dependent estimation of shedding frequency and resulting vibrations.


Author(s):  
Limin Gao ◽  
Guang Xi ◽  
Shangjin Wang

Applying the novel time- and passage-averaging operators, a reduced average-passage equation system is derived to remove the bodyforce and the blockage factor in Adamczyk’s average-passage equations. Like the Reynolds-averaged Navier-Stokes equations the average-passage flow model does not contain sufficient information to determine its solution. Based on the rich throughflow analysis for axial-flow turbomachinery and numerous studies for centrifugal compressors, a semi-empirical model of the deterministic stress is developed for centrifugal compressors in the present study. Finally, the empirical model coupled with the interface approach is applied to predict the time-averaged flow field in a tested centrifugal compressor stage and the results are compared with experimental data. Using the same computational grids, the computational cost with the empirical model is slightly more than that with the mixing plane model, and a good agreement was obtained between the numerical results and experimental data.


2004 ◽  
Author(s):  
Masoud Darbandi ◽  
Gerry E. Schneider ◽  
Arash Taheri

In this work, a multigrid acceleration technique is suitably developed for solving the two-dimensional incompressible Navier-Stokes equations using an implicit finite element volume method. In this regard, the solution domain is broken into a huge number of quadrilateral finite elements. The accurate numerical solution of a flow field can be achieved if very fine grid resolutions are utilized. Unfortunately, the standard implicit solvers need more computational time to solve larger size of algebraic set of equations which normally arise if fine grid distributions are used. Past experience has shown that the convergence of classical relaxation schemes perform an initial rapid decrease of residuals followed by a slower rate of decrease. This point indicates that a relaxation procedure is efficient for eliminating only the high frequency components of the residuals. This problem can be overcome using multigrid method, i.e., carrying out the relaxation procedure on a series of different grid sizes. There are different prolongation operators to establish a multigrid procedure. A new prolongation expression is suitably developed in this work. It needs constructing data during refining and coarsening stages which is fulfilled using suitable finite element interpolators. The extended formulations are finally used to test several different problems with available benchmark solutions. The results indicate that the current multigrid strategy effectively improves the bandit solver performance.


1998 ◽  
Vol 26 ◽  
pp. 289-295
Author(s):  
Mohamed Naaim ◽  
Thierry Pellarin

In this paper, numerical and experimental approaches are applied to analyse the dynamics of the front of a gravity current. This study focused on two parameters: internal density and velocity fields. The salt concentration was determined by a potentiometric process. The internal velocities were determined using an optical device and an image-processing system. The structure of the head of the gravity current was analysed. Its density was measured and two stages of evolution were observed. This analysis allows us to coufirm the existence of two important stages. Forxf<xs, where the dynamics depend on the initial condition, the flow consists of a head and body and the front density is constant. Forxf>xs, we show that the density of the front decreases and evolves towards the Hallworth and others (1993) law. From a comparison between the experiments and the numerical model, we show that the numerical model, which is based on Navier–Stokes equations and on thek−Lturbulence model (whereLis the height of the gravity current), can predict well flow in the slump regime and in the inertia–buoyancy regime with smoothed results in the transition from the head to the body of the gravity current.


Sign in / Sign up

Export Citation Format

Share Document