scholarly journals NUMERICAL ANALYSIS OF THE NATURAL CONVECTION IN HORIZONTAL ANNULI AT LOW AND MODERATE Ra

2006 ◽  
Vol 5 (2) ◽  
pp. 58
Author(s):  
E. L. M. Padilla ◽  
R. Campregher ◽  
A. Silveira-Neto

The natural convection at low and moderate Rayleigh numbers (Ra) incylindrical horizontal annuli with imposed temperatures in both surfaces isnumerically studied. This flow inside concentric cylinders classic configuration has a wide range of practical and technological applications, which justifies its growing studies efforts. In this work, the governing equations are discretized by the volume finite technique over a staggered grid, with second-order accuracy in space and time. The flow pattern is presented by several Rayleigh numbers, with an analysis of the heat transfer coefficient and flow properties. Furthermore, a three-dimensional field is shown at a moderate Ra number. The results showed a good agreement with the experimental data.

2014 ◽  
Vol 670-671 ◽  
pp. 613-616 ◽  
Author(s):  
Jabrane Belabid ◽  
Abdelkhalek Cheddadi

This work presents a numerical study of the natural convection in a saturated porous medium bounded by two horizontal concentric cylinders. The governing equations (in the stream function and temperature formulation) were solved using the ADI (Alternating Direction Implicit) method and the Samarskii-Andreev scheme. A comparison between the two methods is conducted. In both cases, the results obtained for the heat transfer rate given by the Nusselt number are in a good agreement with the available published data.


1992 ◽  
Vol 114 (1) ◽  
pp. 99-106 ◽  
Author(s):  
A. Cheddadi ◽  
J. P. Caltagirone ◽  
A. Mojtabi ◽  
K. Vafai

Natural convection is investigated numerically and experimentally in a cylindrical annulus. The governing equations based on primitive variables are solved using Chorin’s method. In addition to the unicellular flows reported in the literature, depending on initial conditions, bicellular flows are observed for high Rayleigh numbers. The bifurcation point is determined numerically. The velocity field for unicellular flows is measured by laser-Doppler anemometry in an air-filled annulus. A perturbation solution is also presented. The experimental results are in good agreement with numerical predictions and the perturbation solution.


2000 ◽  
Vol 123 (1) ◽  
pp. 84-95 ◽  
Author(s):  
C. J. Ho ◽  
F. J. Tu

An experimental and numerical investigation is presented concerning the natural convection of water near its maximum-density in a differentially heated rectangular enclosure at high Rayleigh numbers, in which an oscillatory convection regime may arise. The water in a tall enclosure of Ay=8 is initially at rest and at a uniform temperature below 4°C and then the temperature of the hot vertical wall is suddenly raised and kept at a uniform temperature above 4°C. The cold vertical wall is maintained at a constant uniform temperature equal to that of the initial temperature of the water. The top and bottom walls are insulated. Using thermally sensitive liquid crystal particles as tracers, flow and temperature fields of a temporally oscillatory convection was documented experimentally for RaW=3.454×105 with the density inversion parameter θm=0.5. The oscillatory convection features a cyclic sequence of onset at the lower quarter-height region, growth, and decay of the upward-drifting secondary vortices within counter-rotating bicellular flows in the enclosure. Two and three-dimensional numerical simulations corresponding to the visualization experiments are undertaken. Comparison of experimental with numerical results reveals that two-dimensional numerical simulation captures the main features of the observed convection flow.


2012 ◽  
Vol 23 (04) ◽  
pp. 1250030 ◽  
Author(s):  
FAYÇAL HAMMAMI ◽  
NADER BEN-CHEIKH ◽  
ANTONIO CAMPO ◽  
BRAHIM BEN-BEYA ◽  
TAIEB LILI

In this work, a numerical study devoted to the two-dimensional and three-dimensional flow of a viscous, incompressible fluid inside a lid-driven cavity is undertaking. All transport equations are solved using the finite volume formulation on a staggered grid system and multi-grid acceleration. Quantitative aspects of two and three-dimensional flows in a lid-driven cavity for Reynolds number Re = 1000 show good agreement with benchmark results. An analysis of the flow evolution demonstrates that, with increments in Re beyond a certain critical value Rec, the steady flow becomes unstable and bifurcates into unsteady flow. It is observed that the transition from steadiness to unsteadiness follows the classical Hopf bifurcation. The time-dependent velocity distribution is studied in detail and the critical Reynolds number is localized for both 2D and 3D cases. Benchmark solutions for 2D and 3D lid-driven cavity flows are performed for Re = 1500 and 6000.


2017 ◽  
Vol 10 ◽  
pp. 93-106 ◽  
Author(s):  
M.K. Teixeira de Brito ◽  
D.B. Teixeira de Almeida ◽  
A.G. Barbosa de Lima ◽  
L. Almeida Rocha ◽  
E. Santana de Lima ◽  
...  

This work aims to study heat and mass transfer in solids with parallelepiped shape with particular reference to drying process. A transient three-dimensional mathematical model based on the Fick ́s and Fourier ́s Laws was developed to predict heat and mass transport in solids considering constant physical properties and convective boundary conditions at the surface of the solid. The analytical solution of the governing equations was obtained using the method of separation of variables. The study was applied in the drying of common ceramic bricks. Predicted results of the heating and drying kinetics and the moisture and temperature distributions inside the material during the process, are compared with experimental data and good agreement was obtained. It has been found that the vertices of the solid dry and heat first. This provokes thermal and hydric stresses inside the material, which may compromise the quality of the product after drying.


Author(s):  
Mustafa Gursoy ◽  
Mehmet Arik ◽  
Tunc Icoz ◽  
Michael Yovanovich ◽  
Theodorian Borca-Tasciuc

Natural convection over vertical plates is a very well known problem in heat transfer. There are many available correlations to predict Nusselt numbers for a wide range of Rayleigh numbers. These benchmark studies on natural convection for vertical plates were conducted on rather large surfaces leading to Rayleigh numbers in the range of 0.1 to 109. In natural convection the sole driving force of fluid motion is the change in fluid density, when the diffusive limit is small compared to convective heat transfer. However, conduction to air, as well as air entrainment from sides also contributes to the heat removal from heater surfaces. An experimental study has been carried out with small and large heaters compared to published data for 2×103<Ra<4×107. Square surfaces of 12.5 and 25.4 mm, and rectangular heaters of sizes 25.4×101.6 and 25.4×203.2 mm were tested for a range of heat inputs such that the surface temperatures are controlled between 30 °C and 80 °C. It is found that published correlations underpredict the Nusselt numbers as much as 20%. It is observed that widely known correlations underpredict the experimental values since the 3D conduction and side air drifts on heat transfer are not accounted for in these correlations. However, the cuboid model which includes the 3D diffusion term showed much better agreement with the experimental results.


Author(s):  
Mo Yang ◽  
Jin Wang ◽  
Kun Zhang ◽  
Ling Li ◽  
Yuwen Zhang

Detailed numerical analysis is presented for three-dimensional natural convection heat transfer in annulus with an internal concentric slotted cylinder. The internal slotted cylinder and the outer annulus are maintained at uniform but different temperatures. Governing equations are discretized using control volume technique based on staggered grid formulation and solved using SIMPLE algorithm with QUICK scheme. Flow and heat transfer characteristics are investigated for a Rayleigh number range of 10 to 106 while Prandtl number (Pr) is taken to be 0.7. The results indicate, at Rayleigh numbers below 105, the system shows two dimensional flow and heat transfer characteristics. On the other hand, the flow and heat transfer shows three dimensional characteristics while for Rayleigh numbers greater than 5×105. Comparison with experimental results indicated that the numerical solutions by three dimensional model can obtain more accuracy than the numerical solutions by two dimensional model. Besides, Numerical results show that the average equivalent conductivity coefficient of natural convection heat transfer of this problem can be enhanced by as much as 30% while relative slot width is more than 0.1.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 554 ◽  
Author(s):  
Blas Zamora

Buoyancy-driven airflow that included two isothermal inner plates established in a vented cavity is investigated numerically. The thermally optimum wall-to-wall spacing of the immersed channel, as well as its dependence with respect to the relevant governing parameters, are determined. Results are presented as a function of the aspect ratio b/H for a wide range of Rayleigh numbers RaH. A logarithmic correlation for the optimum (b/H)opt as a function of RaH is presented. In addition, since the outlined configuration might be subject to intense heating conditions, the influence of considering variable thermophysical properties is also included in the analysis. In fact, an appreciable influence of the variation of properties on (b/H)opt is also detected for a representative value of RaH = 109. Obtained results can be directly applied to the optimization of electronic equipment cooling, or even to thermal passive devices in buildings.


2018 ◽  
Vol 09 (04) ◽  
pp. 1850005 ◽  
Author(s):  
Adil El Baroudi ◽  
Fulgence Razafimahery

In the current study, a theoretical method is developed to predict the vibrational behavior of micro-circular disks filled with viscous fluids and numerical results are presented to validate the model. Vibrations with two outer boundary conditions, rigid and deformable vessel, are studied. The coupled governing equations of both rigid and deformable vessel vibration are solved by the analytical procedure, taking fluid–structure interaction into account. The fluid gap effect on the coupled eigenfrequencies is also considered. The frequency spectrum plots of the first several eigenfrequencies are presented in a wide range of fluid gap and elasticity ratio. The correctness of results is demonstrated using a commercial finite element software. It is shown that the obtained results through the proposed method reveal very good agreement with the numerical solution.


2005 ◽  
Vol 128 (2) ◽  
pp. 157-165 ◽  
Author(s):  
Peter M. Teertstra ◽  
M. Michael Yovanovich ◽  
J. Richard Culham

An analytical model is developed for natural convection from a single circuit board in a sealed electronic equipment enclosure. The circuit card is modeled as a vertical isothermal plate located at the center of an isothermal, cuboid shaped enclosure. A composite model is developed based on asymptotic solutions for three limiting cases: pure conduction, laminar boundary layer convection, and transition flow convection. The conduction shape factor and natural convection models are validated using data from CFD simulations for a wide range of enclosure geometries and flow conditions. The model is shown to be in good agreement, to within 10% RMS, with the numerical data for all test configurations.


Sign in / Sign up

Export Citation Format

Share Document