Analysis of a Telescoped Orogenic Gold System: Insights from the Fosterville Deposit

2020 ◽  
Vol 115 (8) ◽  
pp. 1645-1664
Author(s):  
Christopher R. Voisey ◽  
Andrew G. Tomkins ◽  
Yanlu Xing

Abstract The Fosterville gold (Au) deposit is hosted in the Bendigo zone within the western Lachlan orogen, southeast Australia, and contains three distinct mineralization styles: (1) refractory Au in fine-grained arsenopyrite and arsenian pyrite disseminated throughout metasedimentary rocks near brittle faults, (2) visible Au hosted in fault-controlled quartz-carbonate veins associated with stibnite mineralization, and (3) vein-hosted visible Au with little or no associated stibnite. Refractory Au mineralization is found throughout the deposit, whereas visible Au ± stibnite occurs deeper in the system (>800-m depth from surface). Thus, Fosterville provides a unique opportunity to study a telescoped orogenic Au system that changes mineralization style as a function of depth. Microscopy, neutron tomography, nanoscale secondary ion mass spectrometry, and field observations have been conducted to investigate mineralogical and structural controls on the various styles of Au mineralization. These observations are used as the foundation for reactive mass transport geochemical modeling using HCh software. Results are considered in the context of an evolving mineral system over the formation history of the deposit, and relative timing of mineralization is inferred. Two alternatives for the genesis of such a system include the following: (1) metal deposition was controlled by ongoing physicochemical changes at a very shallow level in the crust in one evolving mineralization stage or (2) two or three deposits formed in the same location, with each different style of mineralization representing a separate period of fluid infiltration, each potentially tens of millions of years apart. Based on careful observations, microanalysis, and thermodynamic modeling, we suggest that the latter is more likely. Therefore, we suggest that Fosterville is to be recognized as a telescoped orogenic Au system, where relatively high temperature mineralization and alteration assemblages were overprinted vertically by later, lower-temperature assemblages.


2020 ◽  
Author(s):  
Christopher Bailey ◽  
Claire Rae

<p>Neoproterozoic rocks exposed in the Jebel Akhdar massif of northern Oman preserve glaciogenic deposits associated with multiple Cryogenian glaciations. Although the depositional history of these rocks is well understood, the significance of post-depositional deformation is poorly constrained. In this study, we examine low-grade metasedimentary rocks exposed in the Ghubrah Bowl, an erosional window in the Jebel Akhdar massif, in order to quantify the 3D finite strain, understand deformation kinematics, and determine the timing of deformation/metamorphism.</p><p>In the Jebel Akhdar massif, the older Ghubrah (Sturtian glaciation) and younger Fiq (Marinoan glaciation) formations comprise a >1 km thick sequence of diamictite interbedded with sandstone, siltstone, conglomerate, volcanic rock, and minor carbonate. Diamictites contain abundant clasts of siltstone and sandstone, with lesser amounts of granite and metavolcanic rock in a fine-grained quartz + sericite ± chlorite matrix. Clasts range from granules to boulders. Harder clasts tend to be subangular and poorly aligned with low aspect ratios, whereas fine-grained rock clasts are well-aligned with large aspect ratios. Bedding generally dips to the NW, but is gently folded in accord with the overall structure of the Jebel Akhdar massif. A penetrative foliation strikes E-W and dips to the S. At some locations, a prominent elongation lineation/pencil structure occurs and plunges gently to moderately to the S.</p><p>R<sub>f</sub>/phi strain analysis in the diamictites reveals a range of 3D strain geometries (apparent flattening to apparent constriction) with strain ratios up to 2.8 in XZ sections. Strain is strongly partitioned, as clasts of igneous rock have low aspect ratios and are only weakly aligned. Penetrative strain in clast-supported sandstones is negligible (XZ ratios of <1.2). Outsized clasts of granite and sandstone are mantled by distinctive symmetric pressure shadows (double-duckbill structures) that include more recrystallized minerals than elsewhere in the diamictite. <sup>40</sup>Ar/<sup>39</sup>Ar geochronology of sericite in pressure shadows yields ages as young as 90 Ma, which are interpreted as mixed ages containing an older detrital component and a younger fraction formed during growth. Deformation is associated with southward emplacement and loading by the Oman ophiolite & Hawasina Group sediments over the autochthonous sequence in the late Cretaceous.</p>



Author(s):  
Adam A. Garde ◽  
Brian Chadwick ◽  
John Grocott ◽  
Cees Swager

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Garde, A. A., Chadwick, B., Grocott, J., & Swager, C. (1997). Metasedimentary rocks, intrusions and deformation history in the south-east part of the c. 1800 Ma Ketilidian orogen, South Greenland: Project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 60-65. https://doi.org/10.34194/ggub.v176.5063 _______________ The south-east part of the c. 1800 Ma Ketilidian orogen in South Greenland (Allaart, 1976) is dominated by strongly deformed and variably migmatised metasedimentary rocks known as the ‘Psammite and Pelite Zones’ (Chadwick & Garde, 1996); the sediments were mainly derived from the evolving Julianehåb batholith which dominates the central part of the orogen. The main purpose of the present contribution is to outline the deformational history of the Psammite Zone in the region between Lindenow Fjord and Kangerluluk (Fig. 2), investigated in 1994 and 1996 as part of the SUPRASYD project (Garde & Schønwandt, 1995 and references therein; Chadwick et al., in press). The Lindenow Fjord region has high alpine relief and extensive ice and glacier cover, and the fjords are regularly blocked by sea ice. Early studies of this part of the orogen were by boat reconnaissance (Andrews et al., 1971, 1973); extensive helicopter support in the summers of 1992 and 1994 made access to the inner fjord regions and nunataks possible for the first time.A preliminary geological map covering part of the area between Lindenow Fjord and Kangerluluk was published by Swager et al. (1995). Hamilton et al. (1996) have addressed the timing of sedimentation and deformation in the Psammite Zone by means of precise zircon U-Pb geochronology. However, major problems regarding the correlation of individual deformational events and their relationship with the evolution of the Julianehåb batholith were not resolved until the field work in 1996. The SUPRASYD field party in 1996 (Fig. 1) was based at the telestation of Prins Christian Sund some 50 km south of the working area (Fig. 2). In addition to base camp personnel, helicopter crew and the four authors, the party consisted of five geologists and M.Sc. students studying mafic igneous rocks and their mineralisation in selected areas (Stendal et al., 1997), and a geologist investigating rust zones and areas with known gold anomalies.



2017 ◽  
Author(s):  
Lincoln S. Hollister ◽  
◽  
Chaney Lin ◽  
Glenn J. Macpherson ◽  
Luca Bindi ◽  
...  


2020 ◽  
Author(s):  
Stacia M. Gordon ◽  
◽  
Kirsten B. Sauer ◽  
Ann E.H. Hanson ◽  
Robert B. Miller ◽  
...  




1999 ◽  
Vol 118 (5) ◽  
pp. 2245-2261 ◽  
Author(s):  
Carme Gallart ◽  
Wendy L. Freedman ◽  
Antonio Aparicio ◽  
Giampaolo Bertelli ◽  
Cesare Chiosi


Author(s):  
M. Cignoni ◽  
S. Degl'Innocenti ◽  
P. G. Prada Moroni ◽  
S. N. Shore


2020 ◽  
Vol 501 (2) ◽  
pp. 1803-1822
Author(s):  
Seunghwan Lim ◽  
Douglas Scott ◽  
Arif Babul ◽  
David J Barnes ◽  
Scott T Kay ◽  
...  

ABSTRACT As progenitors of the most massive objects, protoclusters are key to tracing the evolution and star formation history of the Universe, and are responsible for ${\gtrsim }\, 20$ per cent of the cosmic star formation at $z\, {\gt }\, 2$. Using a combination of state-of-the-art hydrodynamical simulations and empirical models, we show that current galaxy formation models do not produce enough star formation in protoclusters to match observations. We find that the star formation rates (SFRs) predicted from the models are an order of magnitude lower than what is seen in observations, despite the relatively good agreement found for their mass-accretion histories, specifically that they lie on an evolutionary path to become Coma-like clusters at $z\, {\simeq }\, 0$. Using a well-studied protocluster core at $z\, {=}\, 4.3$ as a test case, we find that star formation efficiency of protocluster galaxies is higher than predicted by the models. We show that a large part of the discrepancy can be attributed to a dependence of SFR on the numerical resolution of the simulations, with a roughly factor of 3 drop in SFR when the spatial resolution decreases by a factor of 4. We also present predictions up to $z\, {\simeq }\, 7$. Compared to lower redshifts, we find that centrals (the most massive member galaxies) are more distinct from the other galaxies, while protocluster galaxies are less distinct from field galaxies. All these results suggest that, as a rare and extreme population at high z, protoclusters can help constrain galaxy formation models tuned to match the average population at $z\, {\simeq }\, 0$.



Author(s):  
Kirsten T. Wenzel ◽  
Michael Wiedenbeck ◽  
Jürgen Gose ◽  
Alexander Rocholl ◽  
Esther Schmädicke

AbstractThis study presents new secondary ion mass spectrometry (SIMS) reference materials (RMs) for measuring water contents in nominally anhydrous orthopyroxenes from upper mantle peridotites. The enstatitic reference orthopyroxenes from spinel peridotite xenoliths have Mg#s between 0.83 and 0.86, Al2O3 ranges between 4.02 and 5.56 wt%, and Cr2O3 ranges between 0.21 and 0.69 wt%. Based on Fourier-transform infrared spectroscopy (FTIR) characterizations, the water contents of the eleven reference orthopyroxenes vary from dry to 249 ± 6 µg/g H2O. Using these reference grains, a set of orthopyroxene samples obtained from variably altered abyssal spinel peridotites from the Atlantic and Arctic Ridges as well as from the Izu-Bonin-Mariana forearc region was analyzed by SIMS and FTIR regarding their incorporation of water. The major element composition of the sample orthopyroxenes is typical of spinel peridotites from the upper mantle, characterized by Mg#s between 0.90 and 0.92, Al2O3 between 1.66 and 5.34 wt%, and Cr2O3 between 0.62 and 0.96 wt%. Water contents as measured by SIMS range from 68 ± 7 to 261 ± 11 µg/g H2O and correlate well with Al2O3 contents (r = 0.80) and Cr#s (r. = -0.89). We also describe in detail an optimized strategy, employing both SIMS and FTIR, for quantifying structural water in highly altered samples such as abyssal peridotite. This approach first analyzes individual oriented grains by polarized FTIR, which provides an overview of alteration. Subsequently, the same grain along with others of the same sample is measured using SIMS, thereby gaining information about homogeneity at the hand sample scale, which is key for understanding the geological history of these rocks.



2019 ◽  
Vol 15 (S359) ◽  
pp. 386-390
Author(s):  
Lucimara P. Martins

AbstractWith the exception of some nearby galaxies, we cannot resolve stars individually. To recover the galaxies star formation history (SFH), the challenge is to extract information from their integrated spectrum. A widely used tool is the full spectral fitting technique. This consists of combining simple stellar populations (SSPs) of different ages and metallicities to match the integrated spectrum. This technique works well for optical spectra, for metallicities near solar and chemical histories not much different from our Galaxy. For everything else there is room for improvement. With telescopes being able to explore further and further away, and beyond the optical, the improvement of this type of tool is crucial. SSPs use as ingredients isochrones, an initial mass function, and a library of stellar spectra. My focus are the stellar libraries, key ingredient for SSPs. Here I talk about the latest developments of stellar libraries, how they influence the SSPs and how to improve them.



Sign in / Sign up

Export Citation Format

Share Document