Unraveling Mineralization and Multistage Hydrothermal Overprinting Histories by Integrated in Situ U-Pb and Sm-Nd Isotopes in a Paleoproterozoic Breccia-Hosted Iron Oxide Copper-Gold Deposit, SW China

2021 ◽  
Author(s):  
Zhi-Kun Su ◽  
Xin-Fu Zhao ◽  
Xiao-Chun Li ◽  
Mei-Fu Zhou ◽  
Allen K. Kennedy ◽  
...  

Abstract Precambrian iron oxide copper-gold (IOCG) deposits are generally encountered with multistage hydrothermal overprints and hence have complex isotopic records. Precise dating of ore-forming and overprinting events and assessment of time-resolved metal sources are fundamental for understanding ore genesis. Here, we quantify the evolution history by integrating in situ U-Pb dating of texturally constrained allanite and Sm-Nd isotope data of ores and major rare earth element (REE) minerals in the breccia-hosted Lanniping Fe-Cu deposit in Kangdian region, southwestern China. The economically mineralized breccia in Lanniping Fe-Cu deposit is characterized by pervasive and texturally destructive replacement of polymictic clasts, including host metasedimentary packages, the intruded dolerite, and pre-ore halokinetic breccia. Ore minerals in cements are mainly composed of magnetite, chalcopyrite, bornite, and variable amounts of REE-rich minerals (e.g., apatite and allanite/epidote). Two types of allanite were identified in ores. Type I prismatic allanite texturally intergrown with magnetite has a SHRIMP U-Pb age of 1728 ± 20 Ma (1σ), which matches a zircon U-Pb age of 1713 ± 14 Ma (2σ) for the dolerite clasts and provides the direct age constraint on the Fe-Cu mineralization event. Type II anhedral allanite shows complex zoning and is spatially associated with, but texturally later than, magnetite, apatite, and chalcopyrite. This type of allanite yields significantly younger SHRIMP dates of 1015 ± 33 (1σ) and 800 ± 16 Ma (1σ) for cores and rims, respectively, which correspond to discrete regional magmatic events and hence record hydrothermal overprint/remobilization events of ore minerals in the deposit. Integrated Sm-Nd isotope compositions of type I allanite, apatite, and whole ores generally align along the reference Sm-Nd isochron of 1728 Ma, further confirming the primary ore formation at ~1.7 Ga. Corresponding εNd(1728 Ma) values ranging from –2.8 to 0.3 are significantly higher than those of the host metasedimentary rocks (–9.5 to –6.2) but comparable to those of contemporaneous igneous intrusions (–0.3 to 5.3) in the region, demonstrating that REE components of the primary ores were dominantly sourced from rocks of mantle-derived affinity. Both cores and rims of the younger type II allanite grains have Nd isotope compositions consistent with the unique time-evolved line of the ~1.7 Ga ores, implying that REEs incorporated into type II allanite were ultimately sourced from the primary ores in this deposit. The combined texture, chemical, U-Pb, and Sm-Nd isotope data thus demonstrate that REE remobilization was localized during post-ore hydrothermal overprint with negligible external inputs of REEs to the primary ores in the Lanniping deposit. In this contribution, we not only date primary ore formation but also recognize several younger allanite generations that record internal metal redistributions in response to post-ore tectonothermal events. Our study highlights the potential of ore-associated REE minerals such as allanite for resolving the age of multiple stages of hydrothermal events in complex ore deposits by ion probe, provided that careful examination of textural and paragenetic relationship of ores is conducted. Our finding of these younger allanite generations also exemplifies the significance of evaluation on time-resolved metal input for better characterizing the evolution history of the IOCG deposits.

2017 ◽  
Vol 451 ◽  
pp. 90-103 ◽  
Author(s):  
Nelson F. Bernal ◽  
Sarah A. Gleeson ◽  
Martin P. Smith ◽  
Jaime D. Barnes ◽  
Yuanming Pan

2022 ◽  
Vol 117 (2) ◽  
pp. 485-494
Author(s):  
Tobias U. Schlegel ◽  
Renee Birchall ◽  
Tina D. Shelton ◽  
James R. Austin

Abstract Iron oxide copper-gold (IOCG) deposits form in spatial and genetic relation to hydrothermal iron oxide-alkali-calcic-hydrolytic alteration and thus show a mappable zonation of mineral assemblages toward the orebody. The mineral zonation of a breccia matrix-hosted orebody is efficiently mapped by regularly spaced samples analyzed by the scanning electron microscopy-integrated mineral analyzer technique. The method results in quantitative estimates of the mineralogy and allows the reliable recognition of characteristic alteration as well as mineralization-related mineral assemblages from detailed mineral maps. The Ernest Henry deposit is located in the Cloncurry district of Queensland and is one of Australia’s significant IOCG deposits. It is known for its association of K-feldspar altered clasts with iron oxides and chalcopyrite in the breccia matrix. Our mineral mapping approach shows that the hydrothermal alteration resulted in a characteristic zonation of minerals radiating outward from the pipe-shaped orebody. The mineral zonation is the result of a sequence of sodic alteration followed by potassic alteration, brecciation, and, finally, by hydrolytic (acid) alteration. The hydrolytic alteration primarily affected the breccia matrix and was related to economic mineralization. Alteration halos of individual minerals such as pyrite and apatite extend dozens to hundreds of meters beyond the limits of the orebody into the host rocks. Likewise, the Fe-Mg ratio in hydrothermal chlorites changes systematically with respect to their distance from the orebody. Geochemical data obtained from portable X-ray fluorescence (p-XRF) and petrophysical data acquired from a magnetic susceptibility meter and a gamma-ray spectrometer support the mineralogical data and help to accurately identify mineral halos in rocks surrounding the ore zone. Specifically, the combination of mineralogical data with multielement data such as P, Mn, As, P, and U obtained from p-XRF and positive U anomalies from radiometric measurements has potential to direct an exploration program toward higher Cu-Au grades.


Development ◽  
1988 ◽  
Vol 103 (1) ◽  
pp. 111-118 ◽  
Author(s):  
C.J. Devlin ◽  
P.M. Brickell ◽  
E.R. Taylor ◽  
A. Hornbruch ◽  
R.K. Craig ◽  
...  

During limb development, type I collagen disappears from the region where cartilage develops and synthesis of type II collagen, which is characteristic of cartilage, begins. In situ hybridization using antisense RNA probes was used to investigate the spatial localization of type I and type II collagen mRNAs. The distribution of the mRNA for type II collagen corresponded well with the pattern of type II collagen synthesis, suggesting control at the level of transcription and mRNA accumulation. In contrast, the pattern of mRNA for type I collagen remained more or less uniform and did not correspond with the synthesis of the protein, suggesting control primarily at the level of translation or of RNA processing.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 990
Author(s):  
Fatemeh Nikkhou ◽  
Fang Xia ◽  
Xizhi Yao ◽  
Idowu A. Adegoke ◽  
Qinfen Gu ◽  
...  

A flow-through reaction cell has been developed for studying minerals leaching by in-situ time-resolved powder X-ray diffraction, allowing for a better understanding of the leaching mechanisms and kinetics. The cell has the capability of independent control of temperature (up to 95 °C) and flow rate (>0.5 mL min−1) for atmospheric pressure leaching. It was successfully tested at the powder diffraction beamline at the Australian Synchrotron. Galena powder was leached in a citrate solution under flow-through condition at a flow rate of 0.5 mL min−1, while diffraction patterns were collected during the entire leaching process, showing rapid galena dissolution without the formation of secondary mineral phases. The flow-through cell can be used to study leaching processes of other ore minerals.


Author(s):  
Christian Lammers ◽  
Markus Stein ◽  
Melanie Fey ◽  
Christoph Möller ◽  
Christian Fuchs ◽  
...  
Keyword(s):  
Type I ◽  
Type Ii ◽  

2009 ◽  
Vol 63 (11) ◽  
pp. 1204-1210 ◽  
Author(s):  
Yuji Nishikawa ◽  
Tatsuhiko Nakano ◽  
Isao Noda

A time-resolved soft-pulse dynamic compression attenuated total reflection (ATR) step-scan Fourier transform rheo-optical system has been developed. This system was used to observe different viscoelastic properties of polyethyleneterephthalate (PET) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHx). Resonance features were observed in the dynamic compression ATR spectrum of PHBHx with 625 Hz soft-pulse frequency. In contrast, the dynamic compression ATR spectrum of PET showed no resonance features. The resonance feature of PHBHx was found at 1723 cm−1, which corresponds to the structural or morphological reorganization of a less ordered (Type II) crystalline form under compressive perturbation. The time-resolved evolution of infrared (IR) spectra was effectively analyzed by conventional generalized two-dimensional (2D) correlation analysis. The 2D-IR results indicate that the dynamic response of the well-ordered Type I crystalline state (1289 and 1261 cm−1) is faster than that of the Type II (1723, 1277, and 1228 cm−1). The present method shows promise for characterizing a wide variety of viscoelastic materials, including polymer alloys, blends, composites, and copolymers, and semicrystalline polymers.


2014 ◽  
Vol 922 ◽  
pp. 260-263 ◽  
Author(s):  
Masatoshi Ii ◽  
Masaki Tahara ◽  
Hideki Hosoda ◽  
Shuichi Miyazaki ◽  
Tomonari Inamura

The preferred morphology of self-accommodation (SA) microstructure in a Ti-Nb-Al shape memory alloy was investigated by the evaluation of the frequency distribution of the habit plane variant (HPV) clusters using in-situ optical microscopy. The observed HPV clusters were classified into two different types; one is the cluster connected by the {111}o type I twin (Type I) and the other is connected by the <211>o type II twin (Type II). The total fractions of the Type I and Type II clusters were 52% and 48%, respectively. The incompatibility at junction planes (JPs) of the two clusters was almost the same among these clusters. However, most of the larger martensite plates (> 50μm) formed Type I cluster at the later stage of the reverse martensitic transformation, i.e., at the early stage of the forward transformation upon cooling. The ratio of the fraction of Type I and II is almost 2:1 at the early stage of the forward transformation.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Qiong Yu ◽  
Liang Zhang ◽  
Shaohua Bai ◽  
Baoxiu Fan ◽  
Zhenhai Chen ◽  
...  

Grouted splice connector is widely employed in precast concrete structures, but its utilization is still limited by shortcomings such as high construction cost, inconvenience in assemblage, and uncompacted grout caused by its small sleeve diameter. The grouted sleeve lapping connectors proposed by the authors can not only provide reasonable force transfer and convenient construction processing but also have the characteristics of low price and easy grouting. In this paper, the seismic performance of two full-scale precast concrete columns with two types of grouted sleeve lapping connectors was investigated, where type-I connector connected two lapped rebars and type-II connector connected four lapped rebars by a steel sleeve, respectively. A cast-in-situ column was also tested as a reference. All the specimens were tested under reversed cyclic horizontal load with a constant axial force. The distribution of cracks, failure modes, loading capacities, deformation abilities, stiffness, ductility, hysteresis loops, and energy dissipation of the specimens were studied. The type-I and type-II grouted sleeve lapping connectors satisfactorily transferred the stress of rebars when the columns reached their ultimate loads, and the seismic performance of the precast concrete columns was found to be comparable to that of the cast-in-situ column. Thus, the grouted sleeve lapping connector has a potential to replace the grouted splice connector in cast-in-situ connection.


Sign in / Sign up

Export Citation Format

Share Document