scholarly journals Evaluation of Agricultural Biomass Resources for Renewable Energy - Biomass from Orchards and Non-paddy Fields -

2004 ◽  
Vol 46 (3) ◽  
pp. 85-92 ◽  
Author(s):  
Seong-Gu Hong
2020 ◽  
Vol 272 ◽  
pp. 122721
Author(s):  
Chen Shaohua ◽  
Hirotatsu Murano ◽  
Tatsuya Hirano ◽  
Yoshiaki Hayashi ◽  
Hiroto Tamura

2007 ◽  
Author(s):  
Kurt A Rosentrater ◽  
Russell A Persyn ◽  
Dennis Todey

Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 102 ◽  
Author(s):  
Maw Maw Tun ◽  
Dagmar Juchelková

Nowadays, renewable energy utilization plays a key role in developing countries to fulfill the additional energy requirements of a country and reduce dependency on fossil fuels and traditional biomass consumption. As Myanmar has an agriculture-based economy and 48% of forest-cover (32.2 million hectares); biomass is one of the major renewable energy sources, contributing around 50% of total energy consumption. Therefore, the study aimed to highlight the available biomass sources and energy potential for the energy sector in Myanmar. In order to achieve the aim, the study collated the types, quantity and qualities of biomass resources, and energy utilization around Myanmar. Besides, the study synthesized and evaluated the energy potential of the major biomass resources coming from the agriculture sector, forest sector, livestock and poultry sector, and municipal sector. It was estimated that the total energy potential of the major biomass sources amounted to approximately 15.19 million tons of oil equivalent (Mtoe) in 2005 and 17.29 Mtoe in 2017, respectively. The unexploited biomass energy potential around the country was estimated to be nearly 50% higher than that of the projected biomass energy utilization during 2015–2019. Finally, the study concluded with recommendations to provide the future sustainable development of biomass energy in Myanmar.


Author(s):  
Norio Matsuura ◽  
Masashi Narita ◽  
Tsunehisa Miki ◽  
Kozo Kanayama ◽  
Norio Takakura

Author(s):  
David ALFONSO ◽  
Ana MEZQUITA ◽  
Eliseo MONFORT ◽  
Daniel GABALDÓN-ESTEVAN

Since ceramic tile industry is an energy intensive industry, European ceramic companies are challenged to reduce their CO2 emissions in the medium and long-term. According the Roadmap for moving to a low-carbon economy in 2050 (European Commission, 2011) the objective is to achieve a reduction in CO2 emissions of between 34 % and 40 % by 2030, and between 83 % and 87 % by 2050. In the present paper we present a study on the viability of the incorporation of biofuels in the energy mix of the Spanish ceramic industry with the objective of (1) identifying the potential use of biomass resources, with a special focus of forest and agricultural biomass, in the manufacturing process of ceramic tile products; (2) identify in what part of the production process it can be introduced; and (3) calculate the reduced environmental impact from the manufacture of ceramic materials through a reduction in carbon dioxide emissions. In order to proceed we firstly present the relevant state of the art for the study of the use of biomass for the ceramic manufacturing process. We continue with the methodology for biomass resources evaluation and present relevant data on forest and agricultural biomass for the ceramic tile industry. We then present data on the evolution and actual energy demand of the ceramic tile industry to characterize its energy demand. And then we identify an opportunity for biomass use in a specific phase of the manufacture of ceramic products, estimating the savings of fossil fuels and the reduction of carbon dioxide emissions and therefore assessing the environmental impact reduction through the introduction of biomass in the manufacturing process of ceramic tile products.


2017 ◽  
Vol 14 (1) ◽  
pp. 85
Author(s):  
A.M. Algarny ◽  
I.M. Al-Naimi ◽  
M.A.M Alhefnawy

The paper promotes sustainable community through empowering the production and utilization of biomass renewable energy. The aim of this paper is to urge societies to adopt sustainable energy practices and resources; the objective is to appraise the possibilities of biomass energy produced through a neighborhood in Eastern Province, Saudi Arabia. The system incorporates an evaluation of the measure of biomass created, then utilizes two ascertaining techniques to gauge whether the measure of energy can be delivered. The computation strategies are hypothetical, with one drawn from past works and the other from a Biomass Calculation Template performed as part of the Evaluation of Biomass Resources for Municipalities study (EBIMUN) by the Waterford County Council. The outcomes demonstrate that the aggregate potential biogas generation of the study area is around 43,200 m3 /year, the methane mass is around 18,000 m3 /year, and the energy production amount is around 250 MWh/year. Contrasting the capability of biogas creation from both techniques, the figure assessed by EBIMUN is around 7,000 m3 /year less than the hypothetically computed amount. The figures suggest that biogas is worthy of consideration as a renewable source of energy. 


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
D. Statuto ◽  
A. Tortora ◽  
P. Picuno

In this paper the attention has been focused on the energy from biomass by-product, including forest biomass and agricultural production, waste and other sources of renewable energy, available in the Basilicata Region. In order to determine the quantity of extractable biomass from the forests of the region data from plans for forest management were used. These data were imported in a Geographic Information System, in order to determine in which part of the Region there is the possibility to find greater quantity of biomass. As for the determination of the quantities of agricultural biomass, the energy crops and the agricultural waste (such as crop residues, grass cuttings, pruning, manure, waste coming from agro-food industries, etc.) were considered too. The reuse and exploitation of these wastes, while contributing to the solution of problems related to their disposal, promote their recovery as a primary source of energy. Once estimated the annual amount of biomass, the percentage of the annual energy contribution which this kind of by-product is able to ensure was determined; this renewable energy source may therefore significantly contribute to the development of the agro-forestry sector.


Author(s):  
Abd Halim Shamsuddin

Being a major agricultural commodity producer in the region Malaysia is well positioned amongst the ASEAN countries to promote the use of biomass as a renewable energy source in the national energy mix. The palm oil industry, the second largest in the world, has over 4 million hectares of plantation. The palm oil milling industry produces large amount of solid residues, the volumes of which for the year 2007 are: empty fruit bunches EFB (16.7 million tonnes), fruit fibres (12.2.million tonnes), and palm kernel shell (4.9 million tonnes). Besides the oil palm milling industry residues, other biomass contributors includes, the timber industry, rice industry and bagasse. These biomass residues, if fully utilized as fuel for power generation, would have the potential of annual generation of 31,900 GWh, with maximum generating capacity of 3,600 MW. Under the National Energy Policy set in 1979, three principal energy objectives, which are instrumental in guiding the future energy sector development, were established. These are Supply, Utilization and Environmental Objectives. In 2001, the beginning of the Eighth Malaysian Plan, Renewable Energy (RE) was regarded as the fifth fuel in the new Five Fuel Strategy in the energy supply mix. The target is that RE contributes 5% of the country’s electricity demand by the year 2005. Malaysia’s Five Fuel Diversification Policy provides the renewable energy policy guidance while the current grid-based small renewable energy programmes (SREP) and the renewable energy power purchase agreement (REPPA), embodies the national renewable energy strategy. To reinforce these policy instruments, the Malaysian Ministry of Energy, Green Technology and Water launched the National Green Technology Policy in the middle of 2009 that include Green Energy Technology. This paper presents the overall scenario of the Malaysia’s biomass resources, the status of biomass contribution to the nation’s energy mix, the challenges faced by the biomass promoters, and future research and development activities in developing optimized and efficient technologies at the Centre for Renewable Energy, Universiti Tenaga Nasional.


2017 ◽  
Vol 66 (1-2) ◽  
pp. 62-67
Author(s):  
Petrana Odavić ◽  
Dragan Milić ◽  
Vladislav Zekić ◽  
Nedeljko Tica

SummaryOwing to the fact that the EU is committed to reducing greenhouse gas emissions by 20% below 1990 levels by 2020, and having in mind their high dependence on import of oil and oil derivatives, which, in turn, causes instability of power supply, increasing attention is being paid to renewable energy sources. Given the ongoing pre-accession process of the Republic of Serbia in relation to the EU, in order to determine the capacity of the country to increase the share of energy use from renewable sources, in this paper clustering of selected regions in the EU-28 has been carried out, after which a comparative analysis of regions was performed in terms of potential of agricultural biomass, for the purpose of generating energy. The aim of this study is to determine the level of the region of Vojvodina in relation to ten selected EU regions, based on parameters that affect the potential for using renewable energy sources, primarily residues from agriculture. By applying the K-means method, Borda count method and comparative analysis, and based on empirical data, results show that the region of Vojvodina takes a significant fifth place. Its share of agricultural land ranks it as the first, whereas production of cereals and the total number of farms larger than 100 ha rank it as the second. It could be concluded that Vojvodina is an agricultural region with large quantities of plant remains, primarily those left over from harvest, which represents a significant potential for energy generation from agricultural biomass.


Sign in / Sign up

Export Citation Format

Share Document