scholarly journals Biomass Sources and Energy Potential for Energy Sector in Myanmar: An Outlook

Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 102 ◽  
Author(s):  
Maw Maw Tun ◽  
Dagmar Juchelková

Nowadays, renewable energy utilization plays a key role in developing countries to fulfill the additional energy requirements of a country and reduce dependency on fossil fuels and traditional biomass consumption. As Myanmar has an agriculture-based economy and 48% of forest-cover (32.2 million hectares); biomass is one of the major renewable energy sources, contributing around 50% of total energy consumption. Therefore, the study aimed to highlight the available biomass sources and energy potential for the energy sector in Myanmar. In order to achieve the aim, the study collated the types, quantity and qualities of biomass resources, and energy utilization around Myanmar. Besides, the study synthesized and evaluated the energy potential of the major biomass resources coming from the agriculture sector, forest sector, livestock and poultry sector, and municipal sector. It was estimated that the total energy potential of the major biomass sources amounted to approximately 15.19 million tons of oil equivalent (Mtoe) in 2005 and 17.29 Mtoe in 2017, respectively. The unexploited biomass energy potential around the country was estimated to be nearly 50% higher than that of the projected biomass energy utilization during 2015–2019. Finally, the study concluded with recommendations to provide the future sustainable development of biomass energy in Myanmar.

2007 ◽  
Vol 11 (3) ◽  
pp. 115-123 ◽  
Author(s):  
Anastasia Zabaniotou ◽  
Vicky Skoulou ◽  
Georgios Koufodimos ◽  
Zissis Samaras

Biomass energy potential is addressed to be the most promising among the renewable energy sources, due to its spread and availability worldwide. Apart form that, biomass has the unique advantage among the rest of renewable energy sources, to be able to provide solid, liquid, and gaseous fuels that can be stored, transported, and utilized, far away from the point of origin. For the northern region of Macedonia in Greece, biomass utilization is considered to be a major issue, due to the considerably intensive regional agricultural activities. Wood by-products, fruit cores, rice husk and cotton gin waste provide a promising energy source for the region. The energy potential of the available agricultural biomass produced in the region is much enough to cover the 10% of the annual oil consumption utilized for thermal applications. However, the cost of energy utilization of biomass is considerably high due to the high cost of the logistics concerning the collection, transport, and storage of biomass. The available utilization technologies developed, to handle efficiently all different species of biomass, cover a wide technological range. One of the most promising technologies involving thermal treatment of biomass and the production of a gaseous fuel (biogas) for industrial heat applications and electricity production, is the thermo chemical conversion. In the present work, an investigation concerning biomass potential for energy production in the region of central Macedonia in Greece, utilizing several locally produced biomass species, is conducted. Emphasis is put on the energy utilization of agricultural by-products and residues. Agricultural sector is of great importance due to the considerably intensive agricultural activities in the region of Central Macedonia. .


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3398
Author(s):  
Mariusz Jerzy Stolarski ◽  
Paweł Dudziec ◽  
Michał Krzyżaniak ◽  
Ewelina Olba-Zięty

Conventional energy sources often do not fully satisfy the needs of a modern economy, especially given the climate changes associated with them. These issues should be addressed by diversification of energy generation, including the development of renewable energy sources (RES). Solid biomass will play a major part in the process in Poland. The function of rural areas, along with a well-developed agricultural and forest economy sector, will be a key aspect in this as these areas are suitable for solid biomass acquisition in various ways. This study aimed to determine the solid biomass energy potential in the commune of Goworowo to illustrate the potential in the smallest administrative units of Poland. This research determined the environmental and natural conditions in the commune, which helped to identify the crucial usable solid biomass resources. The total energy potential of solid biomass resources in the commune of Goworowo amounted to 97,672 GJ y−1. The highest potential was accumulated in straw surplus (37,288 GJ y−1) and the lowest was in wood from roadside maintenance (113 GJ y−1). This study showed that rural areas could soon play a significant role in obtaining solid biomass, and individual communes could become spaces for the diversification of energy feedstock.


2021 ◽  
Vol 11 (13) ◽  
pp. 5907
Author(s):  
Valerii Havrysh ◽  
Antonina Kalinichenko ◽  
Anna Brzozowska ◽  
Jan Stebila

The European Union has set targets for renewable energy utilization. Poland is a member of the EU, and its authorities support an increase in renewable energy use. The background of this study is based on the role of renewable energy sources in improving energy security and mitigation of climate change. Agricultural waste is of a significant role in bioenergy. However, there is a lack of integrated methodology for the measurement of its potential. The possibility of developing an integrated evaluation methodology for renewable energy potential and its spatial distribution was assumed as the hypothesis. The novelty of this study is the integration of two renewable energy sources: crop residues and animal husbandry waste (for biogas). To determine agricultural waste energy potential, we took into account straw requirements for stock-raising and soil conservation. The total energy potential of agricultural waste was estimated at 279.94 PJ. It can cover up to 15% of national power generation. The spatial distribution of the agricultural residue energy potential was examined. This information can be used to predict appropriate locations for biomass-based power generation facilities. The potential reduction in carbon dioxide emissions ranges from 25.7 to 33.5 Mt per year.


2021 ◽  
Vol 39 (1) ◽  
pp. 269-274
Author(s):  
Minghao Liu ◽  
Zhaoyong Sun ◽  
Qian Li ◽  
Zheng Wei ◽  
Baorui Liang

Biomass energy is one of the most important renewable energy sources. Full utilization of this energy helps to optimize agricultural development, improve our living environment, and replace some non-renewable energy sources, thereby promoting the eco-environment across the country. However, biomass energy has not been extensively utilized in rural areas of China. Many farmers are not very enthusiastic about the use of biomass energy. Many scholars have tried to boost the willingness of farmers to utilize biomass energy. Therefore, this paper collects the relevant data from six aspects, namely, environmental factor, cost factor, income factor, behavior factor, policy factor, and personal factor, and constructs a binary logistic regression model. On this basis, the driving and influencing factors of biomass energy utilization were empirically analyzed from the perspective of farmers. The results show that the development of biomass energy is mainly affected by the farmers’ awareness of national energy strategy, the relevant costs of biomass utilization, and the attitude of family members and village committee. The research provides an important reference for further promotion of biomass energy, elevation of its utilization efficiency, and optimization of energy structure in rural China.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1441 ◽  
Author(s):  
Lelis Gonzaga Fraga ◽  
José Carlos F. Teixeira ◽  
Manuel Eduardo C. Ferreira

This paper assesses the potential of biomass energy resources in Timor-Leste (TL). Although other renewable energy sources are mentioned in this article, such as wind energy, solar energy, hydropower, bioenergy, including bioethanol and biogas, the main goal is to gather the data on biomass in TL and provide such data as useful information for a wide range of end-users. The current evaluation is based on various sources which include previous assessments on biomass and other renewable sources. The energy potential of biomass in TL apart that resulting from vegetation or flora and animals is also derived from agricultural waste, such as waste from rice, corn, and coffee. The analyses also include the contribution of agricultural waste, animal waste, and that from urban waste. The results from this article show that the potential of usable biomass energy in TL from forestry and agriculture is 1.68 × 106 toe/year, animal waste is 4.81 × 103 toe/year, and urban solid waste amounts to 9.55 × 103 toe/year. In addition, it is concluded that biomass alone can fully replace fossil fuels for electricity generation.


2021 ◽  
Vol 23 (2) ◽  
pp. 1-10
Author(s):  
Nikola Rajaković ◽  

According to almost all estimates, significant investments in new renewable energy sources in Serbia are needed. Serbia has economically viable potentials of renewable energy sources (RES) (solar energy, wind energy, hydropower, biomass energy, geothermal energy, etc.), so the structure of the production mix in the electricity system should increasingly be based on renewable sources. In this paper, an attempt is made to answer the following questions: does Serbia need new production capacities, does Serbia need new production capacities from RES, and finally, which of the RES would be the most suitable at the moment? The paper assesses whether this is exactly the right moment to accelerate the process of energy transition in Serbia, as well as the opportunity to ensure a more sustainable growth and development through a faster transition to RES. It starts from the fact that increasing the production of electricity from RES, together with measures to increase energy efficiency and decarbonize energy production and consumption, is the backbone of the energy transition and at the same time the essence of Serbia's commitments by joining the Energy Community and accepting international climate agreements. The paper assumes that by increasing the efficiency of the energy sector and use of RES, European policy goals can be achieved in Serbia and that energy sector can be positioned as an engine of stability and sustainable economic development. Secondary effects will lead to increased sustainable employment, reduced public debt and increased competitiveness of the sector. Therefore, the energy transition should be seen as a development opportunity. The construction of large RES plants, especially large solar power plants in Serbia and joining the EU Green Deal, is certainly a signal that Serbia is well on its way to developing a modern, environmentally friendly, competitive and regionally integrated energy system. This will trigger the necessary investments in the modernization of the energy sector and enable the attraction of foreign direct investments. Achieving this vision requires decisive political action at the national and regional levels. Solar projects have the lowest levelized costs of produced kWh of electricity, they are the fastest to implement and they have the least environmental and social impact. Also, large installed capacity can be achieved through a series of large and medium-sized projects that would be territorially distributed in order to reduce the simultaneity of production.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Iveta Varnagirytė-Kabašinskienė ◽  
Diana Lukminė ◽  
Stasys Mizaras ◽  
Lina Beniušienė ◽  
Kęstutis Armolaitis

AbstractThe development of bioenergy markets is beneficial from a climate perspective and helps ensure sustainable forest management both locally and globally. This study aimed to provide an overview of the current state of Lithuanian forest biomass resources with a particular focus on the legal, economic and ecological aspects of forest biomass use for energy and to identify the lessons that should be learned from the history of biomass introduction in the country’s energy sector. These experiences and lessons are valuable both nationally and internationally, where good practices and challenges for the introduction and development of forest biomass for energy production are revealed. We examined the question of whether regulatory drivers in the energy sector can increase forest biomass use for energy production and contribute to sustainable development of Lithuania. To answer this question, we described the legal and market instruments regulating forest biomass use for energy production, the forestry sector and renewable energy policy in Lithuania, the current and potential amount of forest biomass available for energy production and ecological considerations relating to forest biomass use for energy. In Lithuania, forest biomass resources are strategically important for the renewable energy sector. The National Energy Strategy of Lithuania aims to increase the share of renewable energy sources, including forest biomass, within the total energy consumption, with targets of 30% in 2020, 45% in 2030 and 80% in 2050. Lithuania successfully achieved the target of EU legislation on renewables in 2015 ahead of the obligation to achieve it in 2020. Renewable energy is mainly used in heating, as well as in the electricity and transport sectors. This has resulted in a significant price reduction for end users due to the increased use of biomass, mainly local forest biomass, for heat energy production and in the emergence of a biofuel exchange, which acts as a system of biomass auctions that to some extent prevent unjustified price increases. Legislation developed for the energy biomass market in Lithuania allows efficient restructuring of the energy sector, especially for heat production. The Lithuanian energy sector has already successfully replaced imported and relatively expensive natural gas with locally available cheaper renewable energy sources (RES). Compliance with formal environmental regulations is required to protect the soil, ground vegetation, understory and biodiversity during commercial tree harvesting. Lithuania has basic guidelines for the use of wood ash as a compensatory fertiliser, with strict requirements for the chemical quality of wood ash.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2431 ◽  
Author(s):  
Wajahat Ullah Khan Tareen ◽  
Zuha Anjum ◽  
Nabila Yasin ◽  
Leenah Siddiqui ◽  
Ifzana Farhat ◽  
...  

Pakistan is experiencing an undersupply of electricity, causing load shedding several hours per day due to the adherence to conventional energy resources having quantitative and environmental limitations. Fossil fuels generate more than half of the country’s total electricity, but they will ultimately run out due to their limited supply. Their combustion emits greenhouse gases, posing environmental threats. Since the world is tending toward efficient and sustainable alternative methods for harvesting energy from nature, Pakistan has also been investigating an elevated deployment of renewable energy projects. This paper presents a critical analysis of the present energy sector of Pakistan along with global scenarios. Pakistan relies on mainly thermal, hydro, and nuclear energy for power generation. National solar, wind, geothermal, and biomass resources have not been extensively explored and implemented. This paper provides an insight into the potential of these resources in Pakistan to generate electricity for the national grid on a large scale. It focuses on biomass energy, which can be harnessed from bagasse, poultry waste, and municipal waste for power production, and biomass-based fuel for industries and transportation. It concludes that biomass is the most sustainable, available, implementable, and environment-friendly resource that can be utilized to lessen the energy demand and supply gap in Pakistan.


2021 ◽  
Vol 2 (1) ◽  
pp. 31-36
Author(s):  
Sandip Patil ◽  
◽  
Ketan Dhande ◽  

India is a developing country, with a population of about 1,387,297,452. India requires a lot of energy both for development and running all its systems smoothly. Most of the energy consumed in India is in electrical form. The electrical energy consumption of India is around 1,137.00 billion kWh of electric energy per year. When counted per person, this energy comes to an average of around 841 kWh. When looking at the tactical data given out by the Indian government, 80% of the total electrical energy is produced using fossil fuels, even though there is a lot of abundant availability of renewable energy here in India. This paper studies the various renewable energy sources currently utilized in various sectors in India. This paper looks at the effect of technical efficiency gains on energy use in industrial, agricultural, and other sectors in India, at varying levels of aggregation. This paper gives the present status of energy sources and utilization areas. Although around 80% of the average temperature zone is available in the Indian subcontinent, the electrical energy produced in India via solar energy is less than around 1.3% of total consumption. India currently produces 63.730 GW, which is very less when compared to the total energy required. Similarly, India produces 32 GW of electrical energy from the wind sector, which is very little compared to the total energy consumption.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-12
Author(s):  
Lauren K. D’Souza ◽  
William L. Ascher ◽  
Tanja Srebotnjak

Native American reservations are among the most economically disadvantaged regions in the United States; lacking access to economic and educational opportunities that are exacerbated by “energy insecurity” due to insufficient connectivity to the electric grid and power outages. Local renewable energy sources such as wind, solar, and biomass offer energy alternatives but their implementation encounters barriers such as lack of financing, infrastructure, and expertise, as well as divergent attitudes among tribal leaders. Biomass, in particular, could be a source of stable base-load power that is abundant and scalable in many rural communities. This case study examines the feasibility of a biomass energy plant on the Cocopah reservation in southwestern Arizona. It considers feedstock availability, cost and energy content, technology options, nameplate capacity, discount and interest rates, construction, operation and maintenance (O&M) costs, and alternative investment options. This study finds that at current electricity prices and based on typical costs for fuel, O&M over 30 years, none of the tested scenarios is presently cost-effective on a net present value (NPV) basis when compared with an alternative investment yielding annual returns of 3% or higher. The technology most likely to be economically viable and suitable for remote, rural contexts—a combustion stoker—resulted in a levelized costs of energy (LCOE) ranging from US$0.056 to 0.147/kWh. The most favorable scenario is a combustion stoker with an estimated NPV of US$4,791,243. The NPV of the corresponding alternative investment is US$7,123,380. However, if the tribes were able to secure a zero-interest loan to finance the plant’s installation cost, the project would be on par with the alternative investment. Even if this were the case, the scenario still relies on some of the most optimistic assumptions for the biomass-to-power plant and excludes abatement costs for air emissions. The study thus concludes that at present small-scale, biomass-to-energy projects require a mix of favorable market and local conditions as well as appropriate policy support to make biomass energy projects a cost-competitive source of stable, alternative energy for remote rural tribal communities that can provide greater tribal sovereignty and economic opportunities.


Sign in / Sign up

Export Citation Format

Share Document