Microbial profile of asymptomatic and symptomatic teeth with primary endodontic infections by pyrosequencing

2011 ◽  
Vol 36 (6) ◽  
pp. 498 ◽  
Author(s):  
Sang-Min Lim ◽  
Tae-Kwon Lee ◽  
Eun-Jeong Kim ◽  
Jun-Hong Park ◽  
Yoon Lee ◽  
...  
2021 ◽  
Vol 9 (2) ◽  
pp. 105055
Author(s):  
Yasmim Arantes da Fonseca ◽  
Nayara Clarisse Soares Silva ◽  
Adonai Bruneli de Camargos ◽  
Silvana de Queiroz Silva ◽  
Hector Javier Luna Wandurraga ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 491
Author(s):  
Alejandra Ramirez-Hernandez ◽  
Ana K. Carrascal-Camacho ◽  
Andrea Varón-García ◽  
Mindy M. Brashears ◽  
Marcos X. Sanchez-Plata

The poultry industry in Colombia has implemented several changes and measures in chicken processing to improve sanitary operations and control pathogens’ prevalence. However, there is no official in-plant microbial profile reference data currently available throughout the processing value chains. Hence, this research aimed to study the microbial profiles and the antimicrobial resistance of Salmonella isolates in three plants. In total, 300 samples were collected in seven processing sites. Prevalence of Salmonella spp. and levels of Enterobacteriaceae were assessed. Additionally, whole-genome sequencing was conducted to characterize the isolated strains genotypically. Overall, the prevalence of Salmonella spp. in each establishment was 77%, 58% and 80% for plant A, B, and C. The mean levels of Enterobacteriaceae in the chicken rinsates were 5.03, 5.74, and 6.41 log CFU/mL for plant A, B, and C. Significant reductions were identified in the counts of post-chilling rinsate samples; however, increased levels were found in chicken parts. There were six distinct Salmonella spp. clusters with the predominant sequence types ST32 and ST28. The serotypes Infantis (54%) and Paratyphi B (25%) were the most commonly identified within the processing plants with a high abundance of antimicrobial resistance genes.


2021 ◽  
Vol 9 (4) ◽  
pp. 816
Author(s):  
Matthew G. Links ◽  
Tim J. Dumonceaux ◽  
E. Luke McCarthy ◽  
Sean M. Hemmingsen ◽  
Edward Topp ◽  
...  

Background. The molecular profiling of complex microbial communities has become the basis for examining the relationship between the microbiome composition, structure and metabolic functions of those communities. Microbial community structure can be partially assessed with “universal” PCR targeting taxonomic or functional gene markers. Increasingly, shotgun metagenomic DNA sequencing is providing more quantitative insight into microbiomes. However, both amplicon-based and shotgun sequencing approaches have shortcomings that limit the ability to study microbiome dynamics. Methods. We present a novel, amplicon-free, hybridization-based method (CaptureSeq) for profiling complex microbial communities using probes based on the chaperonin-60 gene. Molecular profiles of a commercially available synthetic microbial community standard were compared using CaptureSeq, whole metagenome sequencing, and 16S universal target amplification. Profiles were also generated for natural ecosystems including antibiotic-amended soils, manure storage tanks, and an agricultural reservoir. Results. The CaptureSeq method generated a microbial profile that encompassed all of the bacteria and eukaryotes in the panel with greater reproducibility and more accurate representation of high G/C content microorganisms compared to 16S amplification. In the natural ecosystems, CaptureSeq provided a much greater depth of coverage and sensitivity of detection compared to shotgun sequencing without prior selection. The resulting community profiles provided quantitatively reliable information about all three domains of life (Bacteria, Archaea, and Eukarya) in the different ecosystems. The applications of CaptureSeq will facilitate accurate studies of host-microbiome interactions for environmental, crop, animal and human health. Conclusions: cpn60-based hybridization enriched for taxonomically informative DNA sequences from complex mixtures. In synthetic and natural microbial ecosystems, CaptureSeq provided sequences from prokaryotes and eukaryotes simultaneously, with quantitatively reliable read abundances. CaptureSeq provides an alternative to PCR amplification of taxonomic markers with deep community coverage while minimizing amplification biases.


Oral Diseases ◽  
2021 ◽  
Author(s):  
Jaume Miranda‐Rius ◽  
Lluís Brunet‐Llobet ◽  
Vanessa Blanc ◽  
Gerard Álvarez ◽  
Jordi Moncunill‐Mira ◽  
...  

Author(s):  
Brenda P. F. A. Gomes ◽  
Juliana D. Bronzato ◽  
Rebecca F. Almeida-Gomes ◽  
Ericka T. Pinheiro ◽  
Ezilmara L. R. Sousa ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 465
Author(s):  
Anne A. M. J. Becker ◽  
KC Hill ◽  
Patrick Butaye

Small Indian mongooses (Urva auropunctata) are among the most pervasive predators to disrupt the native ecology on Caribbean islands and are strongly entrenched in their areas of introduction. Few studies, however, have considered the microbial ecology of such biological invasions. In this study, we investigated the gut microbiota of invasive small Indian mongooses in terms of taxonomic diversity and functional potential. To this end, we collected fecal samples from 60 free-roaming mongooses trapped in different vegetation zones on the island Saint Kitts. The core gut microbiome, assessed by 16S rRNA amplicon gene sequencing on the Ion S5TM XL platform, reflects a carnivore-like signature with a dominant abundance of Firmicutes (54.96%), followed by Proteobacteria (13.98%) and Fusobacteria (12.39%), and a relatively minor contribution of Actinobacteria (10.4%) and Bacteroidetes (6.40%). Mongooses trapped at coastal sites exhibited a higher relative abundance of Fusobacterium spp. whereas those trapped in scrubland areas were enriched in Bacteroidetes, but there was no site-specific difference in predicted metabolic properties. Between males and females, beta-diversity was not significantly different and no sex-specific strategies for energy production were observed. However, the relative abundance of Gammaproteobacteria, and more specifically, Enterobacteriaceae, was significantly higher in males. This first description of the microbial profile of small Indian mongooses provides new insights into their bioecology and can serve as a springboard to further elucidating this invasive predator’s impact throughout the Caribbean.


2003 ◽  
Vol 29 (12) ◽  
pp. 794-797 ◽  
Author(s):  
J BAUMGARTNER ◽  
S KHEMALEELAKUL ◽  
T XIA

2007 ◽  
Vol 22 (6) ◽  
pp. 390-397 ◽  
Author(s):  
L. Sassone ◽  
R. Fidel ◽  
L. Figueiredo ◽  
S. Fidel ◽  
M. Faveri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document