scholarly journals Diffusion Tensor Imaging for In Vivo Detection of Degenerated Optic Radiation

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Georg Michelson ◽  
Tobias Engelhorn ◽  
Simone Waerntges ◽  
Arnd Doerfler

Glaucomatous optic nerve atrophy may continue to the linked optic radiation by transneuronal degeneration, as described in animal models of glaucoma. In vivo visualization of the visual pathway represents a new challenge in the field of ophthalmology. We present a new approach for illustration of the optic radiation by diffusion tensor imaging (DTI) based on magnetic resonance imaging (MRI). The DTI was established by use of a 3T high-field scanner. The case of a patient with primary open-angle glaucoma is opposed to this one of a healthy subject to demonstrate the visible rarefication of the optic radiation. The goal was to introduce the technique of the DTI also in ophthalmology and to demonstrate that it may be useful to judge glaucoma-related differences.

2014 ◽  
Vol 60 (5) ◽  
pp. 215-222 ◽  
Author(s):  
Cristina Goga ◽  
Zeynep Firat ◽  
Klara Brinzaniuc ◽  
Is Florian

Abstract Objective: The ultimate anatomy of the Meyer’s loop continues to elude us. Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) may be able to demonstrate, in vivo, the anatomy of the complex network of white matter fibers surrounding the Meyer’s loop and the optic radiations. This study aims at exploring the anatomy of the Meyer’s loop by using DTI and fiber tractography. Methods: Ten healthy subjects underwent magnetic resonance imaging (MRI) with DTI at 3 T. Using a region-of-interest (ROI) based diffusion tensor imaging and fiber tracking software (Release 2.6, Achieva, Philips), sequential ROI were placed to reconstruct visual fibers and neighboring projection fibers involved in the formation of Meyer’s loop. The 3-dimensional (3D) reconstructed fibers were visualized by superimposition on 3-planar MRI brain images to enhance their precise anatomical localization and relationship with other anatomical structures. Results: Several projection fiber including the optic radiation, occipitopontine/parietopontine fibers and posterior thalamic peduncle participated in the formation of Meyer’s loop. Two patterns of angulation of the Meyer’s loop were found. Conclusions: DTI with DTT provides a complimentary, in vivo, method to study the details of the anatomy of the Meyer’s loop.


2016 ◽  
Vol 23 (7) ◽  
pp. 973-981 ◽  
Author(s):  
Jan-Mendelt Tillema ◽  
Stephen D Weigand ◽  
Jay Mandrekar ◽  
Yunhong Shu ◽  
Claudia F Lucchinetti ◽  
...  

Background: The relationship between cortical lesions (CLs) and white matter lesions (WMLs) in multiple sclerosis (MS) is poorly understood. Pathological studies support a topographical association between CLs and underlying subcortical WMLs and suggest CLs may play a role in both disease initiation and progression. We hypothesized that cortical MS lesions are physically connected to white matter MS lesions via axonal connections. Objective: To assess the presence of CL-WML connectivity utilizing novel magnetic resonance imaging (MRI) methodology. Methods: In all, 28 relapsing-remitting MS patients and 25 controls received 3 T MRI scans, including double inversion recovery (DIR) for CL detection coupled with diffusion tensor imaging (DTI). CL and WML maps were created, and DTI was used to calculate inter-lesional connectivity and volumetric connectivity indices. Results: All patients showed inter-lesional WML connectivity (median 76% of WMLs connected to another WML; interquartile range (IQR), 58%–88%). On average, 52% of detected CLs per patient were connected to at least one WML (IQR, 42%–71%). Volumetric connectivity analysis showed significantly elevated cortical lesion ratios in MS patients (median, 2.3; IQR, 1.6–3.3) compared to null MS and healthy control datasets ( p < 0.001). Conclusion: These findings provide strong evidence of inter-lesional connectivity between CLs and WMLs, supporting our hypothesis of intrinsic CL-WML connectivity.


NeuroImage ◽  
2006 ◽  
Vol 29 (3) ◽  
pp. 754-763 ◽  
Author(s):  
Geert De Groof ◽  
Marleen Verhoye ◽  
Vincent Van Meir ◽  
Ilse Tindemans ◽  
Alexander Leemans ◽  
...  

2022 ◽  
Vol 12 (2) ◽  
pp. 816
Author(s):  
Jordan Colman ◽  
Laura Mancini ◽  
Spyros Manolopoulos ◽  
Meetakshi Gupta ◽  
Michael Kosmin ◽  
...  

Despite the increasing precision of radiotherapy delivery, it is still frequently associated with neurological complications. This is in part due to damage to eloquent white matter (WM) tracts, which is made more likely by the fact they cannot be visualised on standard structural imaging. WM is additionally more vulnerable than grey matter to radiation damage. Primary brain malignancies also are known to spread along the WM. Diffusion tensor imaging (DTI) is the only in vivo method of delineating WM tracts. DTI is an imaging technique that models the direction of diffusion and therefore can infer the orientation of WM fibres. This review article evaluates the current evidence for using DTI to guide intracranial radiotherapy and whether it constitutes a new state-of-the-art technique. We provide a basic overview of DTI and its known applications in radiotherapy, which include using tractography to reduce the radiation dose to eloquent WM tracts and using DTI to detect or predict tumoural spread. We evaluate the evidence for DTI-guided radiotherapy in gliomas, metastatic disease, and benign conditions, finding that the strongest evidence is for its use in arteriovenous malformations. However, the evidence is weak in other conditions due to a lack of case-controlled trials.


2008 ◽  
Author(s):  
Don Bigler ◽  
Mark Meadowcroft ◽  
Xiaoyan Sun ◽  
Jeffrey Vesek ◽  
Alex Dresner ◽  
...  

This document describes a suite of new multi-threaded classes for calculating magnetic resonance (MR) T2 and T1 parameter maps implemented using the Insight Toolkit ITK (www.itk.org). Similar to MR diffusion tensor imaging (DTI), MR T2 and T1 parameter maps provide a non-invasive means for quantitatively measuring disease or pathology in-vivo. Included in the suite are classes for reading proprietary Bruker 2dseq and Philips PAR/REC images and example programs and data for validating the new classes.


Sign in / Sign up

Export Citation Format

Share Document