scholarly journals Synthesis of Cobalt-Encapsulated Carbon Nanocapsules Using Cobalt-Doped Fullerene Nanowhiskers

2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Daisuke Matsuura ◽  
Kun'ichi Miyazawa ◽  
Tokushi Kizuka

We synthesized cobalt- (Co-) doped C60 nanowhiskers (NWs) by applying a liquid-liquid interfacial precipitation method using a C60-saturated toluene solution and 2-propanol with Co nitrate hexahydrate (Co(NO3)3⋅6H2O). Heating the NWs at 873–1173 K produced carbon nanocapsules (CNCs) that encapsulated Co clusters with a hexagonal-closed-packed structure. After heating at 1273 K, the encapsulated Co clusters in CNCs were transformed into orthorhombic Co2C clusters. It was found that Co- and Co2C-encapsulated CNCs can be produced by varying heating temperature.

2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Tokushi Kizuka ◽  
Kun'ichi Miyazawa ◽  
Akira Akagawa

Nickel- (Ni) doped C60nanowhiskers (NWs) were synthesized by a liquid-liquid interfacial precipitation method using a C60-saturated toluene solution and isopropanol with Ni nitrate hexahydrate Ni(NO3)2·6H2O. By varying the heating temperature of Ni-doped C60NWs, two types of one-dimensional carbon nanostructures were produced. By heating the NWs at 973 and 1173 K, carbon nanocapsules (CNCs) that encapsulated Ni nanoparticles were produced. The Ni-encapsulated CNCs joined one dimensionally to form chain structures. Upon heating the NWs to 1373 K, cup-stacked-type carbon nanotubes were synthesized.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Tokushi Kizuka ◽  
Kun'ichi Miyazawa ◽  
Daisuke Matsuura

We synthesized iron-(Fe-)doped C60nanowhiskers (NWs) by applying the liquid-liquid interfacial precipitation method that employs a C60-saturated toluene solution and a solution of 2-propanol containing ferric nitrate nonahydrate (Fe(NO3)3⋅9H2O). Fe particles of 3–7 nm in diameter were precipitated in the NWs. By heating at 1173 K, the NWs were transformed into hollow and Fe3C-encapsulated carbon nanocapsules and carbon nanotubes.


2016 ◽  
Vol 675-676 ◽  
pp. 97-100 ◽  
Author(s):  
Prasopporn Junlabhut ◽  
Chakkaphan Wattanawikkam ◽  
Weerachon Phoohinkong ◽  
Wanichaya Mekprasart ◽  
Wisanu Pecharapa

The effects of cobalt (Co) addition on structural and optical properties of TiO2 nanopowders have been investigated. A co-precipitation method was employed to synthesize TiO2 nanoparticles with various Co additives from 0-10 mol% using tetrabutyl titanate and Cobalt (II) nitrate hexahydrate as starting precursors for Ti and Co source, respectively. The crystallinity of Co-doped TiO2 nanopowders is heightened by calcination process. The crystal structure, phase formation and the corresponding functional groups of Co-doped TiO2 were analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The scanning electron microscope (SEM) was taken to observe their morphologies. The chemical compositions of Co additive into TiO2 matrix are confirmed by EDAX. Their optical properties were investigated by diffuse reflectance spectroscopy. Diffuse reflectance spectra of samples exhibit the increasing absorption in visible region with an increasing Co content. The overall characterization results indicated that the crystallinity and optical properties of TiO2 nanoparticles are significantly affected by Co dopant.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1505
Author(s):  
Simona Liliana Iconaru ◽  
Carmen Steluta Ciobanu ◽  
Daniela Predoi ◽  
Mikael Motelica-Heino ◽  
Constantin Cătălin Negrilă ◽  
...  

Hydroxyapatite (Ca10(PO4)6(OH)2, HAp), due to its high biocompatibility, is widely used as biomaterial. Doping with various ions of hydroxyapatite is performed to acquire properties as close as possible to the biological apatite present in bones and teeth. In this research the results of a study performed on thin films of hydroxyapatite co-doped with nitrogen and bromine (NBrHAp) are presented for the first time. The NBrHAp suspension was obtained by performing the adapted co-precipitation method using cetyltrimethylammonium bromide (CTAB). The thin layers of NBrHAp were obtained by spin-coating. The stability of the NBrHAp suspension was examined by ultrasound measurements. The thin layers obtained by the spin-coating method were examined by scanning electron microscopy (SEM), optical microscopy (OM), and metallographic microscopy (MM). The presence of nitrogen and bromine were highlighted by energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) studies. Fourier transform infrared spectroscopy (FTIR) was used to highlight the chemical status of nitrogen and bromine. In addition, the powder obtained from the NBrHAp suspension was analyzed by XRD. Moreover, the in vitro antimicrobial activity of the NBrHAp suspensions and coatings was investigated using the reference microbial strains Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231. The results highlighted the successful obtainment of N and Br co-doped hydroxyapatite suspension for the first time by an adapted co-precipitation method. The obtained suspension was used to produce pure NBrHAp composite thin films with superior morphological properties. The NBrHAp suspensions and coatings exhibited in vitro antimicrobial activity against bacterial and fungal strains and revealed their good antimicrobial activity.


Author(s):  
A. A. Dakhel

: Anatase (TiO2) nanoparticles co-doped with Ni/Al ions were synthesized by a thermo-precipitation method. The samples were characterized by using X‐Ray diffraction and optical absorption spectroscopy. The structural/optical investigations established the development of substitutional solid solutions: TiO2:Ni:Al. The magnetization investigations were performed to study the generated stable ferromagnetic properties of the samples due to the Ni2+ doping. To boost the created ferromagnetic properties, Al ions co-dopings were employed to supply/densify the itinerant electrons. It was planned to decide the suitable hydrogenation conditions and temperature (TH), which are necessary to create appreciable strength of ferromagnetic properties in the host co-doped samples based on TiO2 for practical uses. The results established that the ferromagnetic energy (Umag) was increased by ~240% and the saturation magnetization by ~140% with increasing of TH from 400 oC to 500oC. The obtained Msat was higher by ~50 times than that previously attained for Ni-doped TiO2. Such novel results were discussed and explained through the spin-spin Heisenberg interactions.


2002 ◽  
Vol 17 (1) ◽  
pp. 83-88 ◽  
Author(s):  
K. Miyazawa ◽  
Y. Kuwasaki ◽  
A. Obayashi ◽  
M. Kuwabara

Fine needlelike crystals of C60 have been formed by a liquid–liquid interfacial precipitation method which uses an interface of the concentrated toluene solution of C60/isopropyl alcohol. The needlelike crystals of C60 with a diameter of submicrons (“C60 nanowhiskers”) were found to be single crystalline and composed of thin slabswith a thickness of about 10 nm. The intermolecular distance of the C60 nanowhiskerswas found to be shortened along the growth axis as compared with the pristine C60crystals, indicating a formation of strong bonding between C60 molecules. TheC60 nanowhiskers are assumed to be polymerized via the “2 + 2” cycloaddition inthe close-packed [110]c direction.


Sign in / Sign up

Export Citation Format

Share Document