scholarly journals Biodegradable In Situ Gel-Forming Controlled Drug Delivery System Based on Thermosensitive Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone) Hydrogel

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Elham Khodaverdi ◽  
Ali Golmohammadian ◽  
Seyed Ahmad Mohajeri ◽  
Gholamhossein Zohuri ◽  
Farnaz Sadat Mirzazadeh Tekie ◽  
...  

Traditional drug delivery systems which are based on multiple dosing regimens usually pose many disadvantages such as poor compliance of patients and drug plasma level variation. To overcome the obstacles of traditional drug formulations, novel drug delivery system PCL-PEG-PCL hydrogels have been purposed in this study. Copolymers were synthesized by rapid microwave-assisted and conventional synthesis methods. Polymer characterizations were done using gel permeation chromatography and 1H-NMR. Phase transition behavior was evaluated by inverting tube method and in vitro drug release profile was determined using naltrexone hydrochloride and vitamin B12 as drug models. The results indicated that loaded drug structure and copolymer concentration play critical roles in release profile of drugs from these hydrogels. This study also confirmed that synthesis of copolymer using microwave is the most effective method for synthesis of this kind of copolymer.

Author(s):  
Kanuri Lakshmi Prasad ◽  
Kuralla Hari

Objective: To enhance solubility and dissolution rate of budesonide through development of solid self-nanoemulsifying drug delivery system (S-SNEDDS). Methods: Liquid self-nanoemulsifying drug delivery systems (L-SNEDDS) were prepared and ternary phase diagram was constructed using Origin pro 8. Liquid self-nanoemulsifying formulation LF2 having 20% oil and 80% of surfactant/co-surfactant was optimized from the three formulations (LF1-LF3) to convert in to solid, through various characterization techniques like self-emulsification, in vitro drug release profile and drug content estimation. The prepared L-SNEDDS converted into S-SNEDDS, SF1-SF6 by adsorption technique using Aerosil 200, Neusilin US2, and Neusilin UFL2 to improve flowability, compressibility and stability. Results: Formulation LF2 exhibited globule size of 82.4 nm, PDI 0.349 and Zeta potential -28.6 mV with drug indicating the stability and homogeneity of particles. The optimized formulation SF4 containing Neusilin UFL2 was characterized by DSC, FTIR, X-Ray diffraction studies and found no incompatibility and no major shifts were noticed. Formulation SF4 released 100 % drug in 20 min against pure drug release of 47 % in 60 min. Regardless of the form (i.e. liquid or solid) similar performance of emulsification efficiency is observed. Conclusion: The results demonstrated that the technique of novel solid self-nanoemulsifying drug delivery system can be employed to enhance the solubility and dissolution rate of poorly water-soluble drug budesonide.


2018 ◽  
Vol 33 (2) ◽  
pp. 170-181 ◽  
Author(s):  
Hongying Su ◽  
Wen Zhang ◽  
Yayun Wu ◽  
Xiaodong Han ◽  
Gang Liu ◽  
...  

Stimuli-responsive hydrogels have been widely researched as carrier systems, due to their excellent biocompatibility and responsiveness to external physiologic environment factors. In this study, dextran-based nanogel with covalently conjugated doxorubicin (DOX) was developed via Schiff base formation using the inverse microemulsion technique. Since the Schiff base linkages are acid-sensitive, drug release profile of the DOX-loaded nanogel would be pH-dependent. In vitro drug release studies confirmed that DOX was released much faster under acidic condition (pH 2.0, 5.0) than that at pH 7.4. Approximately 66, 28, and 9% of drug was released in 72 h at pH 2.0, 5.0, and 7.4, respectively. Cell uptake by the human breast cancer cell (MCF-7) demonstrated that the DOX-loaded dextran nanogel could be internalized through endocytosis and distributed in endocytic compartments inside tumor cells. These results indicated that the Schiff base-containing nanogel can serve as a pH-sensitive drug delivery system. And the presence of multiple aldehyde groups on the nanogel are available for further conjugations of targeting ligands or imaging probes.


Author(s):  
Ririyen Dessy N Siahaan ◽  
Hakim Bangun ◽  
Sumaiyah Sumaiyah

Objective: The objective of this study was to evaluate in vitro and in vivo of gastroretentive drug delivery system of cimetidine using hard alginate capsules.Methods: Drug release study was tested to various hard alginate capsules containing 200 mg cimetidine with paddle method dissolution apparatus in artificial gastric fluid pH 1.2. Concentrations of cimetidine were measured using ultraviolet spectrophotometer at 218.4 nm wavelength. The product that fulfilled the sustained release profile was evaluated for bioavailability using male rabbits at dose 9.3 mg/kg orally, and the antiulcer studies were evaluated by HCl-induced ulcer method at cimetidine dose 18 mg/kg once a day orally. Gastric lesions were evaluated by macroscopic and microscopic observations.Results: The results of drug release test showed that hard alginate capsule made from sodium alginate 500–600 cP gave sustained release profile of cimetidine for 12 h. In vivo bioavailability studies showed that cimetidine given with hard alginate capsules gave higher of Cmax, Tmax, and area under the curve of cimetidine compared to cimetidine that given with conventional hard gelatin capsules. The antiulcer studies showed that the healing effect of cimetidine that given with hard alginate capsules was faster than cimetidine given in suspension form. Cimetidine that given with hard alginate capsules macroscopically showed no gastric lesion and histopathologically also showed normal gastric mucosa of rats after 4 days treatment. However, cimetidine given in suspension form showed of 0.036±0.024 ulcer index and microscopically there was still erosion of gastric mucosa of rats after 4 days treatment.Conclusion: Floating gastroretentive of cimetidine using hard alginate capsules give a sustained release of cimetidine with better bioavailability and antiulcer effect of cimetidine.


Author(s):  
UMESH KUMAR SHARMA

Objective: In the present research, the main objective was to investigate the possibility of designing, fabricating, and optimizing a disposable ocular film-based drug delivery system. Methods: Moxifloxacin hydrochloride was loaded onto the prepared disposable ocular films by the soaking method. Results: The drug loading conditions were studied, and it was found that the maximum drug loading was achieved in 3 hours at pH 6.5 of the drug solution. It was also observed that the drug loading efficacy and in vitro drug release profile can be monitored by varying the ocular film composition. The ocular films were then characterized for thickness uniformity, size uniformity, weight uniformity, swelling index, surface pH, breaking on elongation, folding endurance, bio-adhesive strength, transparency, drug loading efficiency, moisture content, morphological characteristics, and in vitro drug release profiles. Conclusion: Based on the results, it was concluded that the developed disposable ocular films demonstrate a significant prolonged drug release within the therapeutic range of up to 12 h, which is promising as a novel disposable contact lens-based ocular drug delivery system.


Author(s):  
Chiranjibi Adhikari ◽  
Gururaj S Kulkarni ◽  
Shivakumar Swamy

Objective: The main objective of the present study was to design and evaluate a time-controlled single unit oral pulsatile drug delivery system containing salbutamol sulfate for the prevention of nocturnal asthma attacks.Methods: Drug containing core tablets (C1-C10) with different composition of superdisintegrants such as sodium starch glycolate, croscarmellose sodium, and crospovidone were prepared by direct compression technique. The fast disintegrating core tablet formulation was selected, and press-coated tablets (P1-P11) were prepared with different compositions of hydrophobic and hydrophilic polymers: Ethylcellulose-20 (EC-20), hydroxypropyl methylcellulose K4M, and low substituted hydroxypropyl cellulose (L-HPC LH11). The coating polymers were selected and quantified based on in vitro lag time and drug release profile in simulated gastric and intestinal fluids.Results: Formulation C10 with 7.5% crospovidone showed least disintegrating time, i.e., 0.31 min and was selected as the best immediate release core tablet. The press-coated tablet formulation P11 having 360 mg barrier layer of EC-20 and L-HPC LH11 in ratio 14:1 over the core tablet C10 showed rapid and complete drug release nearly after 6 h lag time. Accelerated stability studies of the optimized formulation P11 indicated no significant difference in release profile after a period of 6 months.Conclusion: The in vitro dissolution study showed that lag time before drug release was highly affected by the coating level and nature of coating polymer used. Time-controlled pulsatile release tablets can be prepared using press-coating techniques.


Author(s):  
Rajnish Srivastava ◽  
P.K. Choudhury ◽  
Suresh Kumar Dev ◽  
Vaibhav Rathore

Aim: The aim of the present study was to develop and optimize the self-nanoemulsifying drug delivery system of α-pinene (ALP-SNEDDS) and to evaluate its in-vivo anti-Parkinson’s activity. Background: Different lipid-based drug delivery technologies have been researched to upgrade the bioavailability of such drug candidates and to expand their clinical adequacy upon oral administration. Self-emulsifying drug delivery system (SEDDS) have pulled in expanding interests and, specifically, self-nanoemulsifying drug delivery system (SNEDDS). Objective: The present work was an attempt in order to improve the bioavailability of the ALP via defining the role of self-nanoemulsifying formulations for its neuroprotective effect. Method: Miscibility of the ALP was estimated in various excipient components to select the optimized combination. Self-nanoemulsification, thermodynamic stability, effect of dilution on robustness, optical clarity, viscosity and conductivity tests were performed. The in-vivo anti-Parkinson’s activity of the ALP-SNEEDS formulations were done by using Pilocarpine antagonism induced Parkinsonism in rodents. Behavioural tests like tremulous jaw movements, body temperature, salivation and lacrimation are performed. Result: Two optimized formulation, composed of Anise oil, Tween 80 and Transcutol-HP of Oil: Smix ratio (4:6 and 3:7) were selected. The Smix ratio for both the formulation was 2:1. The particle size was found to consistent with the increase in dilution. The mean negative zeta potential of the formulations was found to be increased with increase in dilution. The TEM images of the formulations reveals spherical shape of the droplet. The in-vitro drug release profile was found to be significant as compared to plain ALP suspension. Conclusion: The results form in-vivo studies indicate that nanosizing and enhanced solubilisation of oral ALP-SNEDDS formulations significantly improved the behavioural activities as compared to plain ALP suspension.


Sign in / Sign up

Export Citation Format

Share Document