Melocanna baccifera Bamboo Forests and Impact on Hill Ecosystem of the Indian Sub-Continent

2020 ◽  
Vol 27 (1) ◽  
pp. 1-21
Author(s):  
Ratan Lal Banik ◽  
◽  
◽  
◽  

Melocanna baccifera (Roxb.) Kurz is a versatile NTFP resource. It forms natural bamboo vegetation extended over about 35,86,410 ha of hilly forests distributed only in the geographical region of northeast India, Chittagong Hill Tracts (CHT) and Sylhet of Bangladesh, and Arakan hills of Myanmar. The major biological attributes of M.baccifera that strengthen the species capability in competing other bamboo and tree species in colonizing the hills of the above region are identified. These are underground extensive rhizome net-work with much elongated rhizome necks, the diffused nature of clump to provide room for more number of culms annually, rapid expansion rate of clump, tolerance to biotic interference including fire, huge production of fertile seeds with faster seedling growth, etc. The higher density of pagoda like erect solitary culms with radiating unequal numerous branches provide better mechanism in intercepting the rain water to the ground by throughfall and stemflow. The bamboo forest (BF) has profuse root growth and dense root distribution in the 0-66cm of soil depth and as a result ground is more porous in terms of non-capillary and total porosity of the soil mass. The large scale death of M.baccifera forests due to recent (2002-2010) flowering has mixed impact on the hill ecosystem, biodiversity and socio-economy of indigenous people.

2021 ◽  
Vol 12 ◽  
Author(s):  
Mariele Müller ◽  
Julia Renata Schneider ◽  
Vilson Antônio Klein ◽  
Eliardo da Silva ◽  
José Pereira da Silva Júnior ◽  
...  

Environmental conditions affect crop yield, and water deficit has been highlighted by the negative impact on soybean grain production. Radicial growth in greater volume and depth can be an alternative to minimize losses caused by a lack of water. Therefore, knowledge of how soybean roots behave before the chemical, physical, and biological attributes of the soil can help establish managements that benefit in-depth root growth. The objective was to evaluate the growth of soybean roots in response to chemical, physical, and biological variations in the soil, in different soil locations and depths. Six experiments were conducted in different locations. Soil samples were collected every 5 cm of soil up to 60 cm of soil depth for chemical, physical, and biological analysis. The roots were collected every 5 cm deep up to 45 cm deep from the ground. The six sites presented unsatisfactory values of pH and organic matter, and presented phosphorus, potassium, and calcium at high concentrations in the first centimeters of soil depth. The total porosity of the soil was above 0.50 m3 m−3, but the proportion of the volume of macropores, micropores, and cryptopores resulted in soils with resistance to penetration to the roots. Microbial biomass was higher on the soil surface when compared to deeper soil layers, however, the metabolic quotient was higher in soil depth, showing that microorganisms in depth have low ability to incorporate carbon into microbial biomass. Root growth occurred in a greater proportion in the first centimeters of soil-depth, possibly because the soil attributes that favor the root growth is concentrated on the soil surface.


2013 ◽  
Vol 680 ◽  
pp. 534-539
Author(s):  
Wei Feng Ma

With the rapid expansion of the campus scale and the increasing of the geographically dispersed campus, how to adopt new theory, new method and new technology to realize the equipment optimized assignment and the information management is a new research challenge. It is the key to safeguard the national fund to use reasonably, and to speed up the development of education healthily. Through analyzing the domestic and foreign related research works, the paper proposed that it can take use of the spatial data expression and analysis with Geographic Information System (GIS) to realize the large-scale and inter-campuses equipment optimized assignment and information management. It discussed the mathematics model and the system architecture. Moreover, the paper described the key implementation technology in great detail such as spatial data mapping with MapInfo professional 9 and the development of WebGIS functions with MapXtreme. The results show that the solution is feasible and effective.


2021 ◽  
Author(s):  
Yi Luan ◽  
Rui Ding ◽  
Wenshen Gu ◽  
Xiaofan Zhang ◽  
Xinliang Chen ◽  
...  

Abstract Since the end of 2019, the COVID-19 epidemic has swept the world. With the widespread spread of the COVID-19 and the continuous emergence of mutated strains, the situation for the prevention and control of the COVID-19 epidemic remains severe. On May 21, 2021, Guangzhou City, Guangdong Province, notified the discovery of a new locally confirmed case. Guangzhou became the first city in mainland China to compete with the delta mutant strain. As a local hospital with strong nucleic acid detection capabilities, Sun Yat-sen University Sun Yat-sen Memorial Hospital took the lead in launching the construction and deployment of the Mobile Shelter Laboratories and large-scale screening work in Foshan and Zhanjiang, Guangdong Province. Through summarizing "practical" experience, observation and comparison data analysis, we use real data to verify a feasible solution for rapid expansion of detection capabilities in a short period of time. We hope that these experiences will have certain reference value for other countries or regions, especially the underdeveloped areas of medical and health care.


2014 ◽  
Vol 13 (4) ◽  
pp. 47
Author(s):  
Arjun R

There are about 1933 Early Iron Age Megalithic sites spread across South India. The Early Iron Age of South India is implicit either in the form of burial sites, habitation sites, habitation cum burial sites, Iron Age rock art sites, and isolated iron smelting localities near a habitation or burials. This paper is an attempt to take a rough computation of the potentiality of the labour, technology and quantity of artifact output that this cultural phase might have once had, in micro or in macro level. Considering the emergence of technology and its enormous output in Ceramics, Agriculture, Metallurgy and Building up Burials as industries by themselves, that has economic, ethnographic and socio-technique archaeological imprints. This helps in understanding two aspects: one, whether they were nomadic, semi settled or settled at one location; two, the Diffusion versus Indigenous development. A continuity of late Neolithic phase is seen into Early Iron Age and amalgamation of Early Iron Age with the Early Historic Period as evident in the sites like Maski, Brahmagiri, Sanganakallu, Tekkalakota, T-Narasipur. In few cases, Iron Age folks migrated from one location to the other and settled on the river banks in large scale like that in Hallur and Koppa. In rare cases, they preferred to climb up the hill and stay on the rocky flat surface for example Aihole and Hiere Bekal– sites which are located close to or on the banks of the river or its tributaries of Krishna-Tungabhadra- Kaveri.Keywords: Labour, Industry, Production, Megaliths, Nomadic, Semi Settled, Early Iron Age.


2021 ◽  
Author(s):  
Manolis G. Grillakis

<p>Remote sensing has proven to be an irreplaceable tool for monitoring soil moisture. The European Space Agency (ESA), through the Climate Change Initiative (CCI), has provided one of the most substantial contributions in the soil water monitoring, with almost 4 decades of global satellite derived and homogenized soil moisture data for the uppermost soil layer. Yet, due to the inherent limitations of many of the remote sensors, only a limited soil depth can be monitored. To enable the assessment of the deeper soil layer moisture from surface remotely sensed products, the Soil Water Index (SWI) has been established as a convolutive transformation of the surface soil moisture estimation, under the assumption of uniform hydraulic conductivity and the absence of transpiration. The SWI uses a single calibration parameter, the T-value, to modify its response over time.</p><p>Here the Soil Water Index (SWI) is calibrated using ESA CCI soil moisture against in situ observations from the International Soil Moisture Network and then use Artificial Neural Networks (ANNs) to find the best physical soil, climate, and vegetation descriptors at a global scale to regionalize the calibration of the T-value. The calibration is then used to assess a root zone related soil moisture for the period 2001 – 2018.</p><p>The results are compared against the European Centre for Medium-Range Weather Forecasts, ERA5 Land reanalysis soil moisture dataset, showing a good agreement, mainly over mid-latitudes. The results indicate that there is added value to the results of the machine learning calibration, comparing to the uniform T-value. This work contributes to the exploitation of ESA CCI soil moisture data, while the produced data can support large scale soil moisture related studies.</p>


1976 ◽  
Vol 66 (5) ◽  
pp. 1683-1694
Author(s):  
R. K. Verma ◽  
Manoj Mukhopadhyay ◽  
M. S. Ahluwalia

abstract Practically the whole of northeastern India and northern Burma is characterized as an anomalous gravity field as well as an area of high seismicity. The Bouguer anomaly in the region varies from +44 mgals over Shillong Plateau to −255 mgals near North Lakhimpur in Assam Valley. Isostatic anomaly (Hayford) varies from +100 to −130 mgals in these areas. Over Arakan-Yoma and the Burmese plains, the isostatic anomalies vary from −20 mgals to −100 mgals. Regions of high seismicity in the area include the eastern Himalaya (including Assam syntaxis), Arakan-Yoma including the folded belt of Tripura, Irrawaddy basin, Shillong Plateau, Dauki fault and the northern part of Bengal basin. The abnormal gravity and seismicity are related to large scale tectonic movements that have taken place in the area mostly during the Cretaceous and Cenozoic times, due to interaction of the Indian, Tibetan, and Burmese plates. The high seismicity indicates that the movements are continuing. The seismic zone underlying Burma is approximately V shaped and dips toward the east underneath Arakan-Yoma. Most of the intermediate-focus earthquakes in Burma underlie the area characterized by negative isostatic anomalies, indicating the probable existence of a subduction zone underneath the Arakan-Yoma and the Burmese plains. The Shillong Plateau has a history of vertical uplift since Cretaceous times. Provided this statement is true, the uplift of the plateau preceded Himalayan tectonics starting 20 to 30 m.y. before continental India made solid contact with the Eurasian plate. The plateau is characterized by large positive isostatic anomalies as well as high seismicity. The positive isostatic anomalies may be due to intrusion or incorporation of basic material from the mantle into the crust underlying the Plateau. These intrusions may have taken place through deep seated faults such as the Dauki and could be responsible for its uplift as well.


2014 ◽  
Vol 59 (4) ◽  
pp. 959-970
Author(s):  
X. Li ◽  
W. Zhou ◽  
L. Han ◽  
W.J. Xi ◽  
Garmondyu E. Crusoe

Abstract To probe into the pattern in which the excavation and loading process have on such factors as stress and displacement in neighboring regions of deep open pits, a mechanical unloading model in coal mining process and another model for the loading process are set up respectively. Besides, FLAC3D software is used to simulate dynamic excavating and loading process in open pits and record such data as the unbalanced stress, unloading strength and displacement fluctuations, which further serve as basis for studying the functional relationship about different mining heights and scope of influence using fitting method. The research results indicate that the unloading strength enhances with increasing mining depth in a linear fashion. In addition, a noticeable displacement circle takes shape around the stope, which would also extends with growing mining depth. As to waste loading, it brings about large-scale surface subsidence in neighboring regions, which follows a logarithm function convergence pattern with the distance away from the dump border. Under combined effects of excavation and loading, the value of the soil mass displacement would increase with growing mining depth and loading height. Specifically, the soil displacement at a distance of 100 m away from the stope border (around 200 m away from the outer dump border) is abnormally significant and it further develops at a rate of 0.0228 mm/h.


Author(s):  
Matthew G. Stanard

The period 1914–45 represents the height of European overseas empire even as seeds were sown hastening imperialism’s demise. Colonies were ‘unfinished empires’ in the process of becoming, although frequent resorts to violence in the colonies indicated the limits of Europe’s grasp. Although many emerged from the First World War dubious about European so-called civilization, the civilizing mission survived and flourished, suggesting Europe’s enduring self-confidence. Development became a dominant discourse while the Great Depression quickened colonial exploitation. Emigration and settlement on expropriated lands slowed relative to Europe’s rapid expansion in the 1800s, yet formal colonialism proceeded apace, with few exceptions. Development and exploitation led to forced or voluntary migration of colonial subjects on a large scale. Cold War ideological competition was ‘exported’ to much of the colonial world. Non-Europeans used networks to claim their rights and attack European colonial rule, and they and the colonies influenced Europe, which developed various ‘colonial cultures’.


Antiquity ◽  
2014 ◽  
Vol 88 (340) ◽  
pp. 578-595 ◽  
Author(s):  
Ian Lindsay ◽  
Jeffrey Leon ◽  
Adam T. Smith ◽  
Conner Wiktorowicz

Geophysical techniques now available to archaeology have the potential to provide large-scale survey data that can map the buried structures of extensive and complex sites. Recent work at two Late Bronze Age hilltop fortresses in the mountainous volcanic terrain of Armenia provides an excellent illustration of their potential. Magnetometry revealed an unknown residential complex at Tsaghkahovit. Across the plain at Gegharot, where magnetometry was less successful, ground-penetrating radar identified terracing extending down the western slope of the hill below the fortress, greatly increasing the size of the occupied area. Combined with targeted excavations, these geophysical approaches are providing novel insights into the unusual political relations between fortress-based sovereigns and mobile subjects in central Armenia.


Sign in / Sign up

Export Citation Format

Share Document