Cyber Attacks Evaluation Targeting Internet Facing IoT: An Experimental Evaluation

2021 ◽  
pp. 18-26
Author(s):  
Navod Neranjan Thilakarathne ◽  
◽  
◽  
◽  
N.T .. ◽  
...  

The rapid growth of Information and Communication Technology (ICT) in the 21st century has resulted in the emergence of a novel technological paradigm; known as the Internet of Things, or IoT. The IoT, which is at the heart of today's smart infrastructure, aids in the creation of a ubiquitous network of things by simplifying interconnection between smart digital devices and enabling Machine to Machine (M2M) communication. As of now, there are numerous examples of IoT use cases available, assisting every person in this world towards making their lives easier and more convenient. The latest advancement of IoT in a variety of domains such as healthcare, smart city, smart agriculture has led to an exponential growth of cyber-attacks that targets these pervasive IoT environments, which can even lead to jeopardizing the lives of people; that is involved with it. In general, this IoT can be considered as every digital object that is connected to the Internet for intercommunication. Hence in this regard to analyze cyber threats that come through the Internet, here we are doing an experimental evaluation to analyze the requests, received to exploit the opened Secure Shell (SSH) connection service of an IoT device, which in our case a Raspberry Pi devices, which connected to the Internet for more than six consecutive days. By opening the SSH service on Raspberry Pi, it acts as a Honeypot device where we can log and retrieve all login attempt requests received to the SSH service opened. Inspired by evaluating the IoT security attacks that target objects in the pervasive IoT environment, after retrieving all the login requests made through the open SSH connection we then provide a comprehensive analysis along with our observations about the origin of the requests and the focus areas of intruders; in this study.

2019 ◽  
pp. 7-15
Author(s):  
M. V. Shevchuk ◽  
V. G. Shevchenko ◽  
I. A. Borodyanskiy

The article discusses the issues of teaching the basics of intelligent control systems of the Internet of Things in a school informatics course using modern information and communication technologies. Methodical recommendations for training on this theme in the elective course "The basics of intelligent control systems" using smart devices for smart home and the Internet of Things (Arduino, Raspberry Pi) are given.


Author(s):  
Awad Saad Al-Qahtani, Mohammad Ayoub Khan Awad Saad Al-Qahtani, Mohammad Ayoub Khan

The Internet of things (IOT) users lack awareness of IOT security infrastructure to handle the risks including Threats, attack and penetration associated with its use. IOT devices are main targets for cyber-attacks due to variable personally identifiable information (PII) stored and transmit in the cyber centers. The security risks of the Internet of Things aimed to damage user's security and privacy. All information about users can be collected from their related objects which are stored in the system or transferred through mediums among diverse smart objects and may exposed to exposed dangerous of attacks and threats if it lack authentication so there are essential need to make IOT security requirements as important part of its efficient implementation. These requirements include; availability, accountability, authentication, authorization, privacy and confidentiality, Integrity and Non-repudiation. The study design is a survey research to investigate the visibility of the proposed model of security management for IOT uses, the security risks of IOT devices, and the changes IOT technology on the IT infrastructure of IOT users through answering of the research questionnaires. This work proposes a model of security management for IOT to predict IOT security and privacy threats, protect IOT users from any unforeseen dangers, and determine the right security mechanisms and protocols for IOT security layers, as well as give the most convenient security mechanisms. Moreover, for enhancing the performance of IOT networks by selecting suitable security mechanisms for IOT layers to increase IOT user's security satisfaction.


Author(s):  
Shuyuan Mary Ho ◽  
Mike Burmester

Any device can now connect to the Internet, and Raspberry Pi is one of the more popular applications, enabling single-board computers to make robotics, devices, and appliances part of the Internet of Things (IoT). The low cost and customizability of Raspberry Pi makes it easily adopted and widespread. Unfortunately, the unprotected Raspberry Pi device—when connected to the Internet—also paves the way for cyber-attacks. Our ability to investigate, collect, and validate digital forensic evidence with confidence using Raspberry Pi has become important. This article discusses and presents techniques and methodologies for the investigation of timestamp variations between different Raspberry Pi ext4 filesystems (Raspbian vs. UbuntuMATE), comparing forensic evidence with that of other ext4 filesystems (i.e., Ubuntu), based on interactions within a private cloud, as well as a public cloud. Sixteen observational principles of file operations were documented to assist in our understanding of Raspberry Pi’s behavior in the cloud environments. This study contributes to IoT forensics for law enforcement in cybercrime investigations.


2021 ◽  
Vol 21 (3) ◽  
pp. 1-22
Author(s):  
Celestine Iwendi ◽  
Saif Ur Rehman ◽  
Abdul Rehman Javed ◽  
Suleman Khan ◽  
Gautam Srivastava

In this digital age, human dependency on technology in various fields has been increasing tremendously. Torrential amounts of different electronic products are being manufactured daily for everyday use. With this advancement in the world of Internet technology, cybersecurity of software and hardware systems are now prerequisites for major business’ operations. Every technology on the market has multiple vulnerabilities that are exploited by hackers and cyber-criminals daily to manipulate data sometimes for malicious purposes. In any system, the Intrusion Detection System (IDS) is a fundamental component for ensuring the security of devices from digital attacks. Recognition of new developing digital threats is getting harder for existing IDS. Furthermore, advanced frameworks are required for IDS to function both efficiently and effectively. The commonly observed cyber-attacks in the business domain include minor attacks used for stealing private data. This article presents a deep learning methodology for detecting cyber-attacks on the Internet of Things using a Long Short Term Networks classifier. Our extensive experimental testing show an Accuracy of 99.09%, F1-score of 99.46%, and Recall of 99.51%, respectively. A detailed metric representing our results in tabular form was used to compare how our model was better than other state-of-the-art models in detecting cyber-attacks with proficiency.


Author(s):  
Aditya Tepalwar ◽  
Asha Sherikar ◽  
Prajyot Mane ◽  
Vishal Fulpagare

Smart appliance design that includes multimedia intelligence to deliver comfortable, convenient, and secure personal services in the home is becoming increasingly crucial in the age of information and communication technology. This research looks at the design and execution of a novel interactive multimedia mirror system called as "smart mirror." The glass that will be used is the foundation of the design of a smart mirror. Two-way glass is suggested because it allows the visuals on the display to be seen more clearly. Our way of life has evolved to the point where making the best use of one's time is critical. Based on user surveys and prototype implementation, we propose the development of an innovative appliance that incorporates interactive information services delivered via a user interface on the surface of a mirror. Our work is based on the assumption that we all check ourselves in the mirror before leaving the house, so why shouldn't the mirror be intelligent? Smart Mirrors will eventually replace regular mirrors, providing users with both mirror and computer-assisted information services as technology improves. Because of the Raspberry Pi microcontroller cards aboard, the devices can connect to the internet, download data from the internet, and show that data on the mirror. Weather data, time and location data, current event data, and user data gathered from web services using a Raspberry Pi 3 microcontroller card are all included in the designed intelligent mirror system. The mirror will light up when the user steps in front of it. When thinking about this project, phrases like Smart Mirror, Interactive services, Raspberry Pi , and Web services come to mind.


Author(s):  
Э.Д. Алисултанова ◽  
Л.К. Хаджиева ◽  
М.З. Исаева

Данная статья посвящена созданию профориентационной (умной) лаборатории, которая призвана сформировать у школьников базовые представления о технологии Интернет вещей (IoT), угрозах кибербезопасности в этой сфере, мотивировать к получению в будущем профильного образования и построению карьеры в области обеспечения безопасности Интернет вещей (IoT) при функционировании умного производства. Обучение школьников в профориентационной лаборатории, построенное на основе применения интерактивных электронных образовательных ресурсов, прежде всего будет позиционировать карьерные возможности будущих специалистов в сфере обеспечения безопасности Интернет вещей (IoT) при функционировании умного производства. В рамках функционирования лаборатории особое внимание обучающихся сконцентрировано на тематиках правовых аспектов обеспечения кибербезопасности, главных тенденциях развития киберугроз в современном глобальном информационном пространстве и мерах, необходимых для их нейтрализации. This article is devoted to the creation of a career-oriented (smart) laboratory, which is designed to formulate in schoolchildren basic ideas about the Internet of Things (IoT) technology, cyber security threats in this area, motivate to receive specialized education in the future and build a career in the field of Internet things (IoT) security) with the functioning of smart manufacturing. The training of schoolchildren in a vocational guidance laboratory, based on the use of interactive electronic educational resources, will primarily position the career opportunities of future specialists in the field of Internet of Things (IoT) security in the operation of smart manufacturing. Within the framework of the functioning of the laboratory, special attention of students is concentrated on the topics of the legal aspects of ensuring cyber security, the main trends in the development of cyber threats in the modern global information space and the measures necessary to neutralize them.


2014 ◽  
Vol 17 (11) ◽  
pp. 1313-1324 ◽  
Author(s):  
Joonyoung Lee ◽  
ShinHo Kim ◽  
SaeBom Lee ◽  
HyeonJin Choi ◽  
JaiJin Jung

Author(s):  
Muawya N. Al Dalaien ◽  
Ameur Bensefia ◽  
Salam A. Hoshang ◽  
Abdul Rahman A. Bathaqili

In recent years the Internet of Things (IoT) has rapidly become a revolutionary technological invention causing significant changes to the way both corporate computing systems, and even household gadgets and appliances, are designed and manufactured. The aim of this chapter is to highlight the security and privacy issues that may affect the evolution of IoT technology. The privacy issues are discussed from customer perspectives: first, the IoT privacy concern where the privacy debates on IoT and the IoT privacy that reflected from users' perspective based on the examination of previous researches results. In addition, the different architectures for IoT are discussed. Finally, the chapter discusses the IoT security concern by collecting, analyzing and presenting the major IoT security concerns in the literature as well as providing some potential solutions to these concerns.


Author(s):  
Bill Karakostas

To improve the overall impact of the Internet of Things (IoT), intelligent capabilities must be developed at the edge of the IoT ‘Cloud.' ‘Smart' IoT objects must not only communicate with their environment, but also use embedded knowledge to interpret signals, and by making inferences augment their knowledge of their own state and that of their environment. Thus, intelligent IoT objects must improve their capabilities to make autonomous decisions without reliance to external computing infrastructure. In this chapter, we illustrate the concept of smart autonomous logistic objects with a proof of concept prototype built using an embedded version of the Prolog language, running on a Raspberry Pi credit-card-sized single-board computer to which an RFID reader is attached. The intelligent object is combining the RFID readings from its environment with embedded knowledge to infer new knowledge about its status. We test the system performance in a simulated environment consisting of logistics objects.


Author(s):  
Dragorad Milovanović ◽  
Vladan Pantović ◽  
Gordana Gardašević

The Internet of Things (IoT) is the concept of linking various objects to the Internet that sense/acquire and transmit data in the environment to create a new application. From a standardization perspective, the IoT can be viewed as a global infrastructure, enabling advanced services by interconnecting (physical and virtual) objects based on evolving interoperable information and communication technologies (ICT). The success of the IoT will depend strongly on the existence and effective operation of global standards. The standardization initiative, research projects, national initiatives and industrial activities are outlined in this chapter. There are already many standardization activities related to the IoT, covering broad research areas: wireless and cellular technologies, networking protocols, emerging applications, media-centric IoT. What is needed, therefore, are a harmonization of standards and effective frameworks for large-scale deployment.


Sign in / Sign up

Export Citation Format

Share Document