scholarly journals Occurrence of Fusarium wilt on Cyclamen Casued by Fusarium oxysporum f. sp. cyclaminis and Selection of Resistant Cultivars

2003 ◽  
Vol 9 (2) ◽  
pp. 79-84
Author(s):  
Jin-Young Kim ◽  
Hong-Gi Kim ◽  
Sun-Sung Hong ◽  
Jin-Won Kim ◽  
Kyeong-Yeol Park
2013 ◽  
Vol 22 (3) ◽  
pp. 276 ◽  
Author(s):  
Ika Djatnika

<p>ABSTRAK. Layu Fusarium merupakan penyakit penting yang menjadi kendala dalam memproduksi tanaman anggrek. Untuk mengendalikannya,  petani masih menggunakan fungsida. Tanaman anggrek kerap ditampilkan sebagai hiasan yang dekat dengan lingkungan manusia, maka penggunaan pestisida perlu diperhatikan. Oleh karena itu sangat penting dicari cara pengendalian lainnya yang aman terhadap lingkungan, antara lain dengan  pengendalian hayati. Tujuan penelitian ialah mendapatkan isolat bakteri antagonis yang dapat mengendalikan layu Fusarium pada tanaman Phalaenopsis. Percobaan dilakukan di Laboratorium dan Rumah Kasa Balai Penelitian Tanaman Hias Segunung (1100 m dpl.) serta untuk  mikrob diisolasi dari lokasi tanaman hortikultura di Jawa Barat dan DKI Jakarta, mulai Bulan Januari sampai dengan Desember 2010. Penelitian meliputi isolasi Fusarium spp. sebagai patogen pada tanaman anggrek di beberapa lokasi, isolasi bakteri antagonis, uji kemangkusan bakteri terhadap pertumbuhan Fusarium spp. di laboratorium, dan uji kemangkusan bakteri antagonis terhadap layu Fusarium di rumah kasa. Hasil penelitian menunjukkan bahwa penyebab layu Fusarium pada tanaman Phalaenopsis ialah Fusarium oxysporum. Dari 154 isolat bakteri yang diisolasi dari lapangan, hanya ada tiga  isolat yaitu nomor B23, B 26, dan B37 yang dapat menekan pertumbuhan F. oxysporum pada media PDA. Sampai dengan pengamatan minggu ke-10 setelah inokulasi, ketiga bakteri tersebut masing-masing menekan jumlah tanaman yang terserang layu Fusarium, yaitu sebesar 46,9; 48,9; dan 65,3%, dan masing-masing menekan intensitas penyakit layu 50,5; 43,9; dan 55,1%.</p><p>ABSTRACT. Djatnika, I 2012. Selection of Antagonistic Bacteria for Controlling of Fusarium Wilt on Phalaenopsis Plants. Fusarium wilt is an important disease as constraint on production of orchid plants. The control of Fusarium wilt of orchids with fungicides often use by farmers. Orchid plants are often displayed as a decoration which is close to the human environment, so the application of pesticides have to get attention. It is therefore necessary to find another method that is safe for environments, such as using of biological control. The purpose of the study was to get isolates of  bacterial antagonists for controlling of Fusarium wilt of Phalaenopsis plants. The experiment was conducted at Laboratory and Screenhouse of Indonesian Ornamental Plant Research Institute, Segunung (1100 m asl.) and the microbes were isolated from horticultural area in West Java and DKI Jakarta since January until December 2010. The research comprised of isolation of Fusarium spp. from orchid plants in some location, isolation of bacterial antagonists, the effectiveness of the bacteria to suppress Fusarium spp. growth in laboratory, and the effectiveness of the bacteria to control Fusarium wilt on Phalaenopsis plants in the screenhouse. The results showed that the causal Fusarium wilt of Phalaenopsis plants was identified as Fusarium oxysporum. Three of 154 isolates of bacteria, i.e. isolates number of B23, B26, and B37, could suppress of F. oxysporum growth on PDA media. Observation up to 10 weeks after inoculation, the three bacteria could reduce the number of  plants attacked by Fusarium wilt , which were 46.9; 48.9; and  65.3% respectively, and each of them suppress wilt disease intensity 50.5, 43.9, and 55.1% respectively. <br /><br /></p>


2021 ◽  
Author(s):  
kousuke seki ◽  
kenji komatsu ◽  
masahiro hiraga ◽  
keisuke tanaka ◽  
yuichi uno ◽  
...  

Abstract Resistance to multiple races of Fusarium wilt is considered a critical trait for lettuce (Lactuca sativa L.) cultivars, as it is directly related to grower profitability in Japan. We analyzed F2 individuals obtained from a cross between ‘VI185’ (resistance to race 2) and ‘ShinanoGreen’ (susceptible to race 2), and applied a bioassay to the F3 population using the race 2 pathogen. ddRAD-seq analysis showed that a single semi-dominant locus on LG1 (qFOL1.2) controls resistance, and that the genotype of a RAD-marker designated as LG1_v8_117.181Mbp showed complete co-segregation with the resistance phenotype based on the F2 population. Fine mapping by PCR-based markers further revealed that qFOL1.2 were located in the position of 116.468-117.974Mbp. The 42 cultivars were evaluated for the genotypes and phenotypes using the PCR-based makers designed at this region. As a result of genotyping, all of the susceptible cultivars had the same genotype in this region, but the resistant cultivars had the diversity in the genotype. Notably, the genotype of the PCR-based marker designated as LG1_v8_116.506Mbp was consistent across the 25 resistant cultivars. Thus, we reasoned that LG1_v8_116.506Mbp was a broadly useful marker for selection of race 2-resistance. Our results provide additional breeding technique for resistance to race 2, and can accelerate pyramiding of resistance loci to multiple races of fusarium wilt.


2020 ◽  
Vol 42 (6) ◽  
Author(s):  
Mileide dos Santos Ferreira ◽  
Érica Rodrigues de Moura ◽  
Lucymeire Souza Morais Lino ◽  
Edson Perito Amorim ◽  
Janay Almeida dos Santos-Serejo ◽  
...  

Abstract The banana tree is one of the most cultivated fruit globally; however, some diseases significantly affect its production, such as Fusarium wilt. The most appropriate measure for controlling this disease in areas with inoculum pressure is the use of resistant cultivars. Therefore, this study aimed to generate banana somaclones of the cultivar ‘Prata-Anã’ resistant to Fusarium wilt by inducing somaclonal variation. ‘Prata-Anã’ stem apexes were established in vitro in MS culture medium and, on a monthly basis, subcultivated in AIA and adenine sulfate supplemented MS medium with added plant regulators: 6-benzylaminopurine (BAP, 4 ml L-1), Thidiazuron (TDZ, 1 ml L-1), and Paclobutrazol (PBZ, 10 ml L-1). The treatments were: T0: no regulator, T1: BAP, T2: TDZ, T3: PBZ, T4: BAP + TDZ, T5: BAP + PBZ, T6: TDZ + PBZ, and T7: BAP + TDZ + PBZ. After the twelfth subculture, the regenerated plants were planted in boxes containing sterile soil infected with Fusarium oxysporum f. sp. cubense, and evaluated after 90 days for resistance to the pathogen. Somaclonal variants T2-1 and T2-2, generated in Treatment 2, with TDZ, were selected as resistant. This result is promising for the launch of a new Fusarium race 1-resistant banana variety.


2015 ◽  
Vol 105 (12) ◽  
pp. 1512-1521 ◽  
Author(s):  
Randy C. Ploetz

Banana (Musa spp.) is one of the world’s most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries. Fusarium wilt (also known as Panama disease) is one of the most destructive diseases of this crop. It devastated the ‘Gros Michel’-based export trades before the mid-1900s, and threatens the Cavendish cultivars that were used to replace it; in total, the latter cultivars are now responsible for approximately 45% of all production. An overview of the disease and its causal agent, Fusarium oxysporum f. sp. cubense, is presented below. Despite a substantial positive literature on biological, chemical, or cultural measures, management is largely restricted to excluding F. oxysporum f. sp. cubense from noninfested areas and using resistant cultivars where the pathogen has established. Resistance to Fusarium wilt is poor in several breeding targets, including important dessert and cooking cultivars. Better resistance to this and other diseases is needed. The history and impact of Fusarium wilt is summarized with an emphasis on tropical race 4 (TR4), a ‘Cavendish’-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere.


2004 ◽  
Vol 94 (3) ◽  
pp. 228-235 ◽  
Author(s):  
María del Mar Jiménez-Gasco ◽  
Michael G. Milgroom ◽  
Rafael M. Jiménez-Díaz

Plant pathogens often exhibit variation in virulence, the ability to cause disease on host plants with specific resistance, evident from the diversity of races observed within pathogen species. The evolution of races in asexual fungal pathogens has been hypothesized to occur in a stepwise fashion, in which mutations to virulence accumulate sequentially in clonal lineages, resulting in races capable of overcoming multiple host plant resistance genes or multiple resistant cultivars. In this study, we demonstrate a simple stepwise pattern of race evolution in Fusarium oxysporum f. sp. ciceris, the fungus that causes Fusarium wilt of chickpeas. The inferred intraspecific phylogeny of races in this fungus, based on DNA fingerprinting with repetitive sequences, shows that each of the eight races forms a monophyletic lineage. By mapping virulence to each differential cultivar (used for defining races) onto the inferred phylogeny, we show that virulence has been acquired in a simple stepwise pattern, with few parallel gains or losses. Such a clear pattern of stepwise evolution of races, to our knowledge, has not been demonstrated previously for other pathogens based on analyses of field populations. We speculate that in other systems the stepwise pattern is obscured by parallel gains or losses of virulence caused by higher mutation rates and selection by widespread deployment of resistant cultivars. Although chickpea cultivars resistant to Fusarium wilt are available, their deployment has not been extensive and the stepwise acquisition of virulence is still clearly evident.


2018 ◽  
Vol 46 (2) ◽  
pp. 509-516
Author(s):  
Fang WANG ◽  
Ling XIA ◽  
Shun LV ◽  
Chunxiang XU ◽  
Yuqing NIU ◽  
...  

The use of resistant cultivars is an effective method for the control of banana (Musa spp.) Fusarium wilt caused by race 4 of Fusarium oxysporum f. sp. cubense (Foc4). However, selection of disease-resistant cultivars requires large-scale field evaluations and is time-consuming. Development of early, reliable, and reproducible selection strategies can speed up this process. Sequence characterized amplified region (SCAR) markers have been widely employed in the resistant breeding of many crops. However, to date, there have been no reports about the presence of plant disease resistance-related SCAR markers in mitochondrial genome yet, which also plays a very important role in plant defenses. In the present study, a sequence-related amplified polymorphism (SRAP) marker, a specific fragment of 829 bp, was identified. This fragment could be amplified from Foc4-susceptible but not from the resistant cultivars. It was located in banana mitochondrial genome and mapped near the putative cytochrome c biogenesis ccmB-like mitochondrial protein. This fragment was then successfully converted into a SCAR marker, namely Mito-Foc-S001, which was found to be able to discriminate the resistance from susceptibility to Fusarium wilt disease of bananas with the discriminatory power of the new mark being 96.88%. Thus, this marker can be used in banana (Musa AAA Cavendish) breeding for Fusarium wilt disease resistance.


2019 ◽  
Vol 9 (2) ◽  
pp. 91
Author(s):  
Ghea Dotulong ◽  
Stella Umboh ◽  
Johanis Pelealu

Uji Toksisitas Beberapa Fungisida Nabati terhadap Penyakit Layu Fusarium (Fusarium oxysporum) pada Tanaman Kentang (Solanum tuberosum L.) secara In Vitro (Toxicity Test of several Biofungicides in controlling Fusarium wilt (Fusarium oxysporum) in Potato Plants (Solanum tuberosum L.) by In Vitro) Ghea Dotulong1*), Stella Umboh1), Johanis Pelealu1), 1) Program Studi Biologi, FMIPA Universitas Sam Ratulangi, Manado 95115*Email korespondensi: [email protected] Diterima 9 Juli 2019, diterima untuk dipublikasi 10 Agustus 2019 Abstrak Tanaman kentang (Solanum tuberosum L.) adalah salah satu tanaman hortikultura yang sering mengalami penurunan dari segi produksi dan produktivitasnya, akibat adanya serangan penyakit layu yang salah satunya disebabkan oleh Fusarium oxysporum. Tujuan penelitian ini adalah mengidentifikasi toksisitas beberapa fungisida nabati dalam mengendalikan penyakit Layu Fusarium (F. oxysporum) pada tanaman kentang (Solanum tuberosum L.) secara In Vitro. Metode Penelitian yang digunakan yaitu metode umpan beracun. Data dianalisis dengan Rancangan Acak Lengkap (RAL) dengan Analisis Varian (ANAVA) yang dilanjutkan dengan menggunakan metode BNT (Beda Nyata Terkecil). Hasil Penelitian, diperoleh nilai toksisitas fungisida nabati tertinggi yaitu pada ekstrak daun sirsak dengan nilai HR (69,44%), kategori berpengaruh, ditandai dengan diameter koloni 2,75 cm (100ppm) dan yang terendah toksisitasnya yaitu pada ekstrak daun jeruk purut dengan nilai HR (49,81%), kategori cukup berpengaruh ditandai dengan diameter koloni 3,75 cm (25ppm). Semakin tinggi konsentrasi yang diujikan maka semakin tinggi toksisitas dari fungisida nabati yang diberikan.Kata Kunci: fungisida nabati, Fusarium oxysporum, tanaman kentang, In Vitro Abstract Potato plants (Solanum tuberosum L.) is one of the horticulture plants which often decreases in terms of production and productivity, due to the attack of wilt, one of which is caused by Fusarium oxysporum. The purpose of this study was to determine the toxicity of several biofungicides in controlling Fusarium wilt (F. oxysporum) in potato plants (Solanum tuberosum L.) in Vitro. The research method used was the In Vitro method with the poison bait method. Data were analyzed by Completely Randomized Design with Variant Analysis (ANAVA), followed by the BNT method. The results showed that the highest biofungicide toxicity value was soursop leaf extract with HR values (69.44%), influential categories, characterized by colony diameter 2.75 cm (100ppm) and the lowest toxicity, namely in kaffir lime leaf extract with a value of HR (49.81%), quite influential category was characterized by colony diameter of 3.75 cm (25ppm). The higher the concentration tested, the higher the toxicity of the biofungicide given.Keywords: biofungicides, Fusarium oxysporum, Potato Plants, In Vitro.


Sign in / Sign up

Export Citation Format

Share Document