scholarly journals Effects of temperature, pH and carbon and nitrogen sources on growth of in vitro cultures of ectomycorrhizal isolates from Pinus heldreichii forest

2016 ◽  
Vol 25 (1) ◽  
pp. 048 ◽  
Author(s):  
Jelena Lazarević ◽  
Dragana Stojičić ◽  
Nenad Keča

Aim of study: This study aims to provide basic information about physiological characteristics of isolates of Lactarius deliciosus (L.) Gray, Russula sanguinaria (Schumach.) Rauschert, Suillus collinitus (Fr) Kuntze, Suillus granulatus (L.) Rousell, Tricholoma batchii Gulden and Tricholoma imbricatum (Fr.) Kumm.Area of study: The isolates are obtained from Pinus heldreichii H. Christ forest in the south-eastern part of Montenegro.Material and methods: The isolates were molecularly characterised by internal transcribed spacer (ITS) sequencing and restriction fragment length polymorphism (RFLP) analysis. The effects of different temperatures (20, 22, 25°C), pHs (4, 4.5, 5.2, 5.8, 6.5, 7.5), and carbon (glucose, sucrose, dextrin, arabinose, xylose and starch) and nitrogen (NH4+, NO3- and protein) sources on their growth were examined under laboratory conditions.Main results: The studied factors established significant differences in the development of isolates. Isolates of R. sanguinaria, L. deliciosus and both Suillus, were characterised by faster growth at 22°C, while Tricholoma isolates grew faster at 25°C. S. granulatus, S. collinitus and T. imbticatum isolates grew well at lower pH values (4 - 5.2), while L. deliciosus, R. sanguinaria and T. bachii exhibited faster growth at pHs between 5.8 and 6.5. The examined isolates were able to utilize various carbohydrates as carbon sources. The biggest mycelial growth was characterised for sucrose, then glucose, dextrin, arabinose, starch and xylose. They grew on all examined nitrogen sources, while the biggest mycelia growth was achieved on ammonium, followed by nitrate and protein. Those characteristics varied amongst the species.Research highlights: Information about physiological characteristics of Tricholoma, Lactarius, Russula, as well as Suillus, are sparse. Hence, the data obtained in this study could contribute to the understanding of their function in ecosystems. 

1960 ◽  
Vol 6 (3) ◽  
pp. 355-365 ◽  
Author(s):  
W. A. Taber ◽  
L. C. Vining

Isolates of Claviceps purpurea and Claviceps spp. obtained from various geographical areas were compared for their ability to grow and to produce ergot alkaloids in vitro on various carbon and nitrogen sources. While some differences in utilization of carbon sources for growth were found, there was no observed correlation between utilization of carbohydrates and the capacity to produce ergot alkaloids. The amount of alkaloid produced by different strains depended upon both the carbon and nitrogen sources. In general, those cultures capable of alkaloid production were able to do so on more than one carbon source, but the carbon source allowing greatest production differed from one strain to another. Both producing and non-producing strains could utilize succinic acid as a carbon source for growth, but neither could utilize L-tryptophane as a carbon or nitrogen source for growth.


2021 ◽  
Vol 53 (3) ◽  
pp. 257-264
Author(s):  
Oliver L. Mead ◽  
Cécile Gueidan

AbstractTo improve the efficiency of isolating and culturing lichen mycobionts, we performed a growth assay on an Australian strain of the soil-crust lichenized fungus Endocarpon pusillum Hedw. This assay determined the preferred nitrogen and carbon sources of the fungus by limiting the available nitrogen or carbon sources to single compounds found in soils, plants and lichen thalli. We found that the non-proteinaceous amino acid, GABA, produced the most growth of all nutrients when provided as the sole nitrogen source but was a poor carbon source. Fructose, glucose, cellobiose and sorbitol produced the most growth of all the carbon sources tested. Ammonium, nitrate and polyamines were poor nutrient sources. These findings correspond with reports of primary metabolite pools in other lichen species and may guide future studies involving growth of recalcitrant lichen mycobionts.


1980 ◽  
Vol 60 (2) ◽  
pp. 281-291 ◽  
Author(s):  
R. J. BOILA ◽  
L. P. MILLIGAN

Rumen papillae from cattle were incubated aerobically with combinations of NH4Cl, amino acids and salts of organic acids, the latter including propionate, pyruvate, α-ketoglutarate and glyoxylate. Amino acids in the incubation media were analyzed using a gas-liquid chromatographic technique entailing separation of the isobutyl-N(0)-heptafluorobutyryl esters: glutamine was recovered with glutamate, asparagine with aspartate, and citrulline with ornithine. Rumen papillae incubated with pyruvate or propionate released alanine, but with the latter substrate only glutamate was effective as a nitrogen source. Glycine and glutamate plus glutamine were released in the presence of glyoxylate and α-ketoglutarate, respectively. Serine and aspartate plus asparagine were not quantitatively major products released by rumen papillae. Glutamate was an effective source of nitrogen for the release of alanine and glycine with pyruvate and glyoxylate, respectively, as carbon sources. When rumen papillae were incubated with pyruvate or glyoxylate as the added carbon source, glutamine nitrogen disappeared and was not accounted for by the amino acids measured. With arginine as a substrate, there was a release of ornithine by rumen papillae indicating urea production. The tissues of rumen papillae appear to synthesize amino acids from expected carbon sources with ammonia or glutamate as nitrogen sources and to catabolize glutamine and arginine. The metabolism of amino acids by rumen papillae would contribute to the interchange of nitrogen between the rumen and the host.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Gustavo Carvalho do Nascimento ◽  
Ryhára Dias Batista ◽  
Claudia Cristina Auler do Amaral Santos ◽  
Ezequiel Marcelino da Silva ◽  
Fabrício Coutinho de Paula ◽  
...  

β-fructofuranosidase (invertase) andβ-D-fructosyltransferase (FTase) are enzymes used in industrial processes to hydrolyze sucrose aiming to produce inverted sugar syrup or fructooligosaccharides. In this work, a blackAspergillussp. PC-4 was selected among six filamentous fungi isolated from canned peach syrup which were initially screened for invertase production. Cultivations with pure carbon sources showed that invertase and FTase were produced from glucose and sucrose, but high levels were also obtained from raffinose and inulin. Pineapple crown was the best complex carbon source for invertase (6.71 U/mL after 3 days of cultivation) and FTase production (14.60 U/mL after 5 days of cultivation). Yeast extract and ammonium chloride nitrogen sources provided higher production of invertase (6.80 U/mL and 6.30 U/mL, respectively), whereas ammonium nitrate and soybean protein were the best nitrogen sources for FTase production (24.00 U/mL and 24.90 U/mL, respectively). Fermentation parameters for invertase using yeast extract wereYP/S= 536.85 U/g andPP= 1.49 U/g/h. FTase production showed values ofYP/S= 2,627.93 U/g andPP= 4.4 U/h using soybean protein. The screening for best culture conditions showed an increase of invertase production values by 5.10-fold after 96 h cultivation compared to initial experiments (fungi bioprospection), while FTase production increased by 14.60-fold (44.40 U/mL) after 168 h cultivation.A. carbonariusPC-4 is a new promising strain for invertase and FTase production from low cost carbon sources, whose synthesized enzymes are suitable for the production of inverted sugar, fructose syrups, and fructooligosaccharides.


2003 ◽  
Vol 77 (3) ◽  
pp. 235-238 ◽  
Author(s):  
B. Fried ◽  
E.L. Ponder

AbstractThe effects of temperature on survival, infectivity and in vitro encystment of Echinostoma caproni cercariae in artificial spring water (ASW) were studied. Effects of aging cercariae in ASW at various temperatures showed that at 23°C cercariae achieved 50% survival in 24 h, compared to 92 h at 12°C. Cercariae aged in ASW at 28 and 37.5°C showed 50% survival at 16 and 10 h, respectively. Cercariae aged at different temperatures for various times were used to infect juvenile Helisoma trivolvis (Colorado strain) snails maintained in ASW at 23°C. Index of infectivity was based on counting encysted metacercariae in the snails at 8 to 12 h post-infection. Cercariae aged at 23, 28 and 37.5°C showed 50% encystment at 6, 8 and 4 h, respectively. Cercariae aged at 4°C showed 50% encystment in 10 h and cercariae aged at 12°C showed 50% encystment beyond 16 h. Cercariae showed maximal longevity and infectivity in snails when aged at 12°C in ASW. For E. caproni, as in other digeneans, the infective period of cercariae is markedly shorter than the maximal life-span at any given temperature. Studies on in vitro encystment of E. caproni cercariae in Locke's solution:ASW (1:1) showed that encystment was optimal at 23°C (78% encystment) and that it declined to 44% at 28°C and became almost nil (0.02%) at 12 or 37.5°C.


2017 ◽  
Vol 83 (9) ◽  
Author(s):  
Qiang Zhao ◽  
Hong-Bo Hu ◽  
Wei Wang ◽  
Xian-Qing Huang ◽  
Xue-Hong Zhang

ABSTRACT Phenazine-1-carboxylic acid, the main component of shenqinmycin, is widely used in southern China for the prevention of rice sheath blight. However, the fate of phenazine-1-carboxylic acid in soil remains uncertain. Sphingomonas wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources for growth. In this study, dioxygenase-encoding genes, pcaA1A2, were found using transcriptome analysis to be highly upregulated upon phenazine-1-carboxylic acid biodegradation. PcaA1 shares 68% amino acid sequence identity with the large oxygenase subunit of anthranilate 1,2-dioxygenase from Rhodococcus maanshanensis DSM 44675. The dioxygenase was coexpressed in Escherichia coli with its adjacent reductase-encoding gene, pcaA3, and ferredoxin-encoding gene, pcaA4, and showed phenazine-1-carboxylic acid consumption. The dioxygenase-, ferredoxin-, and reductase-encoding genes were expressed in Pseudomonas putida KT2440 or E. coli BL21, and the three recombinant proteins were purified. A phenazine-1-carboxylic acid conversion capability occurred in vitro only when all three components were present. However, P. putida KT2440 transformed with pcaA1A2 obtained phenazine-1-carboxylic acid degradation ability, suggesting that phenazine-1-carboxylic acid 1,2-dioxygenase has low specificities for its ferredoxin and reductase. This was verified by replacing PcaA3 with RedA2 in the in vitro enzyme assay. High-performance liquid chromatography–mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) analysis showed that phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation, indicating that PcaA1A2A3A4 constitutes the initial phenazine-1-carboxylic acid 1,2-dioxygenase. This study fills a gap in our understanding of the biodegradation of phenazine-1-carboxylic acid and illustrates a new dioxygenase for decarboxylation. IMPORTANCE Phenazine-1-carboxylic acid is widely used in southern China as a key fungicide to prevent rice sheath blight. However, the degradation characteristics of phenazine-1-carboxylic acid and the environmental consequences of the long-term application are not clear. S. wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources. In this study, a three-component dioxygenase, PcaA1A2A3A4, was determined to be the initial dioxygenase for phenazine-1-carboxylic acid degradation in S. wittichii DP58. Phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation. This finding may help us discover the pathway for phenazine-1-carboxylic acid degradation.


2013 ◽  
Vol 5 (2) ◽  
pp. 313-317 ◽  
Author(s):  
Saraswati Bisht

Assessment of different sources of carbon and nitrogen in terms of dry weight biomass of four selected aquatic hyphomycetes viz; Flagellospora penicilloides Ingold, Pestalotiopsis submersus Sati and Tiwari, Tetrachaetum elegans Ingold and Tetracladium marchalianum De Wildeman was made for their nutritional requirements. Eight carbon sources and ten nitrogen sources were singly added to the basal media in order to provide 4g of carbon and 1g of nitrogen per litre of distilled water. Among carbon compounds glucose and sucrose were found to be most suitable sources of carbon for all the four fungal isolates, where as fructose proved good for T. marchalianum, P. submersus and F.penicilloides fairly. Cellulose was found a poor source of carbon for the growth of all these isolates. The inorganic sources of nitrogen were found as good nitrogen sources with preference for ammonium ions. Suitability of amino acids was found variable from species to species for nitrogen. T.elegans and T.marchalianum had their maximum growth in asparagines, whereas, P. submersus had their highest growth in proline. Cysteine was observed as a good source of nitrogen for almost all the fungal isolates used. Anova calculated for these observed data showed significant variations in the dry weight production of different fungal species grown in different sources of carbon and nitrogen(P<0.01).


2019 ◽  
Vol 57 (2) ◽  
pp. 146
Author(s):  
Doan Van Thuoc ◽  
Tran Thi Hien

The effect of different carbon and nitrogen sources on growth of producer strain was investigated. Sucrose and glucose were found to be suitable carbon sources, and monosodium glutamate was favorable nitrogen source for bacterial cell growth. Optimum salt concentrations for bacterial growth was ranged from 4 to 6%, whereas, NaCl concentrations from 12 to 15% found to be good for ectoine accumulation. Two-step fed-batch fermentation was then designed, biomass and ectoine content were significant increased, maximum CDW of 25 g/l and ectoine content of 10.3% were obtained. 


1998 ◽  
Vol 64 (9) ◽  
pp. 3368-3375 ◽  
Author(s):  
J. K. Struthers ◽  
K. Jayachandran ◽  
T. B. Moorman

ABSTRACT We examined the ability of a soil bacterium, Agrobacterium radiobacter J14a, to degrade the herbicide atrazine under a variety of cultural conditions, and we used this bacterium to increase the biodegradation of atrazine in soils from agricultural chemical distribution sites. J14a cells grown in nitrogen-free medium with citrate and sucrose as carbon sources mineralized 94% of 50 μg of [14C-U-ring]atrazine ml−1 in 72 h with a concurrent increase in the population size from 7.9 × 105 to 5.0 × 107 cells ml−1. Under these conditions cells mineralized the [ethyl-14C]atrazine and incorporated approximately 30% of the 14C into the J14a biomass. Cells grown in medium without additional carbon and nitrogen sources degraded atrazine, but the cell numbers did not increase. Metabolites produced by J14a during atrazine degradation include hydroxyatrazine, deethylatrazine, and deethyl-hydroxyatrazine. The addition of 105 J14a cells g−1 into soil with a low indigenous population of atrazine degraders treated with 50 and 200 μg of atrazine g−1soil resulted in two to five times higher mineralization than in the noninoculated soil. Sucrose addition did not result in significantly faster mineralization rates or shorten degradation lag times. However, J14a introduction (105 cells g−1) into another soil with a larger indigenous atrazine-mineralizing population reduced the atrazine degradation lag times below those in noninoculated treatments but did not generally increase total atrazine mineralization.


Sign in / Sign up

Export Citation Format

Share Document