scholarly journals Short communication: Impact of the intensity of milk production on ammonia and greenhouse gas emissions in Portuguese cattle farms

2015 ◽  
Vol 13 (4) ◽  
pp. e06SC05 ◽  
Author(s):  
José Pereira ◽  
Henrique Trindade

<p>The aim of this study was evaluate the relationship between the intensity of milk production for a wide range of Portuguese commercial cattle farms and NH<sub>3</sub> and greenhouse gas (GHG) emissions from manure management and enteric fermentation. A survey was carried out at 1471 commercial dairy cattle farms (Holstein-Friesian) and the NH<sub>3</sub>, N<sub>2</sub>O and CH<sub>4</sub> emissions at each stage of manure management were estimated as well as CH<sub>4</sub> losses from enteric fermentation. Gaseous emissions were estimated by a mass flow approach and following the recommendations of IPCC guidelines. The manure management and enteric fermentation in a typical Portuguese cattle farm contributes with 7.5±0.15 g N/L milk produced as NH<sub>3</sub> and 1.2±0.22 kg CO<sub>2</sub> equivalent per litre of milk as GHG. Increasing milk production will significantly reduce NH<sub>3</sub> and GHG emissions per litre of milk produced. It can be concluded that a win-win strategy for reducing NH<sub>3</sub> and GHG emissions from dairy cattle farms will be the increase of milk production on these farms. This goal can be achieved by implementing animal breeding programs and improving feed efficiency in order to increase productivity.</p>

2014 ◽  
Vol 94 (1) ◽  
pp. 155-173 ◽  
Author(s):  
Susantha Jayasundara ◽  
Claudia Wagner-Riddle

Jayasundara, S. and Wagner-Riddle, C. 2014. Greenhouse gas emissions intensity of Ontario milk production in 2011 compared with 1991. Can. J. Anim. Sci. 94: 155–173. For identifying opportunities for reducing greenhouse gas (GHG) emissions from milk production in Ontario, this study analyzed GHG intensity of milk [kg CO2 equivalents kg−1 fat and protein corrected milk (FPCM)] in 2011 compared with 1991 considering cow and crop productivity improvements and management changes over this period. It also assessed within-province variability in GHG intensity of milk in 2011 using county-level data related to milk production. After allocating whole-farm GHG emissions between milk and meat using an allocation factor calculated according to the International Dairy Federation equation, GHG intensity of Ontario milk was 1.03 kgCO2eq kg−1 FPCM in 2011, 22% lower than that in 1991 (1.32 kg CO2eq kg−1 FPCM). Greenhouse gas sources directly associated with dairy cattle decreased less (21 and 14% for enteric fermentation and manure management, respectively) than sources associated with feed crop production (30 to 34% for emissions related to N inputs and farm-field work). Proportions of GHG contributed from different life cycle activities did not change, with enteric fermentation contributing 46%, feed crop production 34%, manure management 18% and milking and related activities 2%. Within province, GHG intensity varied from 0.89 to 1.36 kg CO2eq kg−1 FPCM, a variation inversely correlated with milk productivity per cow (kg FPCM sold cow−1 year−1). The existence of a wide variation is strong indication for potential further reductions in GHG intensity of Ontario milk through the identification of practices associated with high efficiency.


2018 ◽  
Vol 58 (6) ◽  
pp. 1027 ◽  
Author(s):  
M. R. Garg ◽  
P. L. Sherasia ◽  
B. T. Phondba ◽  
H. P. S. Makkar

Smallholder dairying in India and other developing countries relies on low- and medium-productive animals, and the feeding is mainly based on crop residues and other agro-industrial by-products. The diets are generally nutritionally imbalanced, resulting in productive and reproductive inefficiencies. This also negatively affects the emission intensity (Ei). For the past 3 years, the National Dairy Development Board of India has been implementing large-scale ration-balancing (RB) program in field animals. The effect of feeding balanced rations on Ei was explored. A cradle to farm-gate life-cycle assessment, taking into account the lifespan milk production, was conducted on 163 540 lactating cows and 163 550 buffaloes in northern, southern, eastern and western India. The life-cycle assessment boundary included feed production, enteric fermentation and manure management during various stages of life. On the basis of economic allocation, emissions of methane (CH4) from enteric fermentation, CH4 from manure management, nitrous oxide from manure management and greenhouse gas (GHG), i.e. carbon dioxide (CO2), CH4 and nitrous oxide from feed production, contributed 69.9%, 6.3%, 9.6% and 14.2% in cows, and 71.6%, 7.4%, 12.6% and 8.4% in buffaloes, respectively, to the baseline (before RB) lifetime total GHG emissions. Average Ei based on economic, mass and digestibility allocation for ‘baseline versus after RB’ were 1.6 versus 1.1, 1.8 versus 1.2 and 1.7 versus 1.2 kg CO2-equivalent/kg fat and protein-corrected milk in cows and 2.3 versus 1.5, 2.5 versus 1.6 and 2.4 versus 1.5 kg CO2-equivalent/kg fat and protein-corrected milk in buffaloes, respectively. Feeding-balanced rations significantly improved milk production, but reduced Ei of milk on lifetime basis by 31.2% and 34.7% in cows and buffaloes, respectively. Implementation of RB program has shown considerable potential to reduce GHG emission intensity under smallholding dairy production system of India.


2012 ◽  
Vol 52 (11) ◽  
pp. 998 ◽  
Author(s):  
K. M. Christie ◽  
C. J. P. Gourley ◽  
R. P. Rawnsley ◽  
R. J. Eckard ◽  
I. M. Awty

The Australian dairy industry contributes ~1.6% of the nation’s greenhouse gas (GHG) emissions, emitting an estimated 9.3 million tonnes of carbon dioxide equivalents (CO2e) per annum. This study examined 41 contrasting Australian dairy farms for their GHG emissions using the Dairy Greenhouse Gas Abatement Strategies calculator, which incorporates Intergovernmental Panel on Climate Change and Australian inventory methodologies, algorithms and emission factors. Sources of GHG emissions included were pre-farm embedded emissions associated with key farm inputs (i.e. grains and concentrates, forages and fertilisers), CO2 emissions from electricity and fuel consumption, methane emissions from enteric fermentation and animal waste management, and nitrous oxide emissions from animal waste management and nitrogen fertilisers. The estimated mean (±s.d.) GHG emissions intensity was 1.04 ± 0.17 kg CO2 equivalents/kg of fat and protein-corrected milk (kg CO2e/kg FPCM). Enteric methane emissions were found to be approximately half of total farm emissions. Linear regression analysis showed that 95% of the variation in total farm GHG emissions could be explained by annual milk production. While the results of this study suggest that milk production alone could be a suitable surrogate for estimating GHG emissions for national inventory purposes, the GHG emissions intensity of milk production, on an individual farm basis, was shown to vary by over 100% (0.76–1.68 kg CO2e/kg FPCM). It is clear that using a single emissions factor, such as milk production alone, to estimate any given individual farm’s GHG emissions, has the potential to either substantially under- or overestimate individual farms’ GHG emissions.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 563
Author(s):  
Kelsey Anderson ◽  
Philip A. Moore ◽  
Jerry Martin ◽  
Amanda J. Ashworth

Gaseous emissions from poultry litter causes production problems for producers as well as the environment, by contributing to climate change and reducing air quality. Novel methods of reducing ammonia (NH3) and greenhouse gas (GHG) emissions in poultry facilities are needed. As such, our research evaluated GHG emissions over a 42 d period. Three separate flocks of 1000 broilers were used for this study. The first flock was used only to produce litter needed for the experiment. The second and third flocks were allocated to 20 pens in a randomized block design with four replicated of five treatments. The management practices studied included an unamended control; a conventional practice of incorporating aluminum sulfate (referred to as alum) at 98 kg/100 m2); a novel litter amendment made from alum mud, bauxite, and sulfuric acid (alum mud litter amendment, AMLA) applied at different rates (49 and 98 kg/100 m2) and methods (surface applied or incorporated). Nitrous oxide emissions were low for all treatments in flocks 2 and 3 (0.40 and 0.37 mg m2 hr−1, respectively). The formation of caked litter (due to excessive moisture) during day 35 and 42 caused high variability in CH4 and CO2 emissions. Alum mud litter amendment and alum did not significantly affect GHGs emissions from litter, regardless of the amendment rate or application method. In fact, litter amendments such as alum and AMLA typically lower GHG emissions from poultry facilities by reducing ventilation requirements to maintain air quality in cooler months due to lower NH3 levels, resulting in less propane use and concomitant reductions in CO2 emissions.


2004 ◽  
Vol 84 (3) ◽  
pp. 445-453 ◽  
Author(s):  
D. A. Boadi ◽  
K. M. Wittenberg ◽  
S. L. Scott ◽  
D. Burton ◽  
K. Buckley ◽  
...  

The objectives of this study were to assess enteric methane (CH4) production by beef steers fed one of two isocaloric diets with different forage:grain ratios and to quantify greenhouse gas (GHG) emissions from bedded manure packs in the eight feedlot pens holding these steers (14 head pen-1). Five animals (252 ± 20 kg) in each pen were randomly selected for measurement of CH4 emissions over the course of the 126-d feeding trial. Two 24-h gas collections were completed for each steer in each of three collection periods using the sulfur hexafluoride tracer gas technique. The fluxes of nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) from bedding packs were measured using vented static chambers in each sampling period. Methane production (L d-1) was 42% higher (P < 0.05) from steers fed the low forage:grain ratio than from steers fed the high forage:grain ratio. Overall, methane production (% of gross energy intake) ranged from 0.9 to 6.9% on the low forage:grain diet and from 0.7 to 4.9% on the high forage:grain diet. Daily CH4 emissions were similar in the first two periods and increased during the third sampling period. There was no effect of diet on manure pack temperature during sampling, however, the manure pack was deeper (P < 0.05) in pens holding animals fed the high forage:grain diet. Furthermore, diet had no effect on the manure pack fluxes. Total daily non-CO2 emissions from enteric and manure pack sources (CO2 equivalent) were different (P < 0.05) between dietary treatments and averaged 1931 ± 81 g head-1 d-1 for the low forage:grain and 1394 ± 81 g head-1 d-1 for the high forage:grain diet. Key words: Feedlot steers, greenhouse gases, enteric fermentation, manure packs


2018 ◽  
Vol 61 (3) ◽  
pp. 1121-1131 ◽  
Author(s):  
Yuanqing Zhou ◽  
Hongmin Dong ◽  
Hongwei Xin ◽  
Zhiping Zhu ◽  
Wenqiang Huang ◽  
...  

Abstract. China raises 50% of global live pigs. However, few studies on the carbon footprint (CF) of large-scale pig production based on China’s actual production conditions have been carried out. In this study, life cycle assessment (LCA) and actual production data of a typical large-scale pig farm in northern China were used to assess the greenhouse gas (GHG) emissions or CF associated with the whole process of pig production, including feed production (crop planting, feed processing, and transportation), enteric fermentation, manure management, and energy consumption. The results showed a CF of 3.39 kg CO2-eq per kg of live market pig and relative contributions of 55%, 28%, 13%, and 4% to the total CF by feed production, manure management, farm energy consumption, and enteric fermentation, respectively. Crop planting accounted for 66% of the feed production CF, while feed processing and transportation accounted for the remaining 34%. Long-distance transport of semi-raw feed materials caused by planting-feeding separation and over-fertilization in feed crop planting were two main reasons for the largest contribution of GHG emissions from feed production to the total CF. The CF from nitrogen fertilizer application accounted for 33% to 44% of crop planting and contributed to 16% of the total CF. The CF from the transport of feed ingredients accounted for 17% of the total CF. If the amount of nitrogen fertilizer used for producing the main feed ingredients is reduced from 209 kg hm-2 (for corn) and 216 kg hm-2 (for wheat) to 140 kg hm-2 (corn) and 180 kg hm-2 (wheat), the total CF would be reduced by 7%. If the transport distance for feed materials decreased from 325 to 493 km to 30 km, along with reducing the number of empty vehicles for transport, the total CF would be reduced by 18%. The combined CF mitigation potential for over-fertilization and transport distance is 26%. In addition, the use of pit storage, anaerobic digestion, and lagoon for manure management can reduce GHG emissions from manure management by 76% as compared to the traditional practice of pit storage and lagoon. This case study reveals the impact of planting-feeding separation and over-fertilization on the CF of the pig supply chain in China. The manure management practice of pit storage, anaerobic digestion, and lagoon is much more conductive to reducing the CF as compared to the traditional practice of pit storage and lagoon. Keywords: Greenhouse gas, Life cycle assessment, Mitigation, Pig.


2009 ◽  
Vol 55 (No. 8) ◽  
pp. 311-319 ◽  
Author(s):  
Z. Exnerová ◽  
E. Cienciala

As a part of its obligations under the Climate Convention, the Czech Republic must annually estimate and report its anthropogenic emissions of greenhouse gases. This also applies for the sector of agriculture, which is one of the greatest producers of methane and nitrous oxide emissions. This paper presents the approaches applied to estimate emissions in agricultural sector during the period 1990–2006. It describes the origin and sources of emissions, applied methodology, parameters and emission estimates for the sector of agriculture in the country. The total greenhouse gas emissions reached 7644 Gg CO<sub>2</sub> eq. in 2006. About 59% (4479 Gg CO<sub>2</sub> eq.) of these emissions has originated from agricultural soils. This quantity ranks agriculture as the third largest sector in the Czech Republic representing 5.3% of the total greenhouse gas emissions (GHG). The emissions under the Czech conditions consist mainly of emissions from enteric fermentation, manure management and agricultural soils. During the period 1990–2006, GHG emissions from agriculture decreased by 50%, which was linked to reduced cattle population and amount of applied fertilizers. The study concludes that the GHG emissions in the sector of agriculture remain significant and their proper assessment is required for sound climate change adaptation and mitigation policies.


Author(s):  
Dorottya Ivanyos ◽  
László Ózsvári ◽  
István Fodor ◽  
Csaba Németh ◽  
Attila Monostori

The aim of the study was to survey the milking technology and to analyse the associations between milking parlour type, herd size, and milk production parameters on dairy cattle farms. The milking technology was surveyed by using a questionnaire in 417 Hungarian dairy herds with 177,514 cows in 2017, and it was compared with their official farm milk production data. The surveyed farms were categorized according to their size (1-50, 51-300, 301-600, and &gt;600 cows) and to their milking parlour types (herringbone, parallel, carousel, and others). The relationships were analysed by multivariate linear models, one-way ANOVA, and Fisher’s exact test. Pairwise comparisons were performed by Tukey’s post hoc tests. The prevailing type of milking parlour was herringbone (71.0 %), but on larger farms the occurrence of parallel and carousel parlours increased (p&lt;0.001). The number of milking stalls per farm increased with herd size (p&lt;0.001). Farms with herringbone parlour had significantly smaller number of milking stalls than that of parallel (p=0.022) and carousel (p&lt;0.001) parlours, and the cows were mostly milked two times, while in carousel milking parlours mostly three times a day. As the herd size increased, so did daily milk yield (p&lt;0.001) and daily milk production per cow (p&lt;0.001). Herd size was associated with somatic cell count (p&lt;0.001). The type of milking parlour showed significant association with daily milk yield (p=0.039) and dairy units with herringbone milking system had the lowest milk quality. Our findings show that herd size has greater impact on milk production parameters than milking technologies.


2020 ◽  
Author(s):  
Carolyn-Monika Görres ◽  
Claudia Kammann

&lt;p&gt;Arthropods are a major soil fauna group, and have the potential to substantially influence the spatial and temporal variability of soil greenhouse gas (GHG) sinks and sources. The overall effect of soil-inhabiting arthropods on soil GHG fluxes still remains poorly quantified since the majority of the available data comes from laboratory experiments, is often controversial, and has been limited to a few species. The main objective of this study was to provide first insights into field-level carbon dioxide (CO&lt;sub&gt;2&lt;/sub&gt;), methane (CH&lt;sub&gt;4&lt;/sub&gt;) and nitrous oxide (N&lt;sub&gt;2&lt;/sub&gt;O) emissions of soil-inhabiting larvae of the Scarabaeidae family. Larvae of the genus &lt;em&gt;Melolontha&lt;/em&gt; were excavated at various grassland and forest sites in west-central and southern Germany, covering a wide range of different larval developmental stages, and larval activity levels. Excavated larvae were immediately incubated in the field to measure their GHG emissions. Gaseous carbon emissions of individual larvae showed a large inter- and intra-site variability which was strongly correlated to larval biomass. This correlation persisted when upscaling CO&lt;sub&gt;2&lt;/sub&gt; and CH&lt;sub&gt;4 &lt;/sub&gt;emissions to the plot scale. Field emission estimates for &lt;em&gt;Melolontha&lt;/em&gt; spp. were subsequently upscaled to the European level to derive the first regional GHG emission estimates for members of the Scarabaeidae family. Estimates ranged between 10.42 and 409.53 kt CO&lt;sub&gt;2&lt;/sub&gt; yr&lt;sup&gt;-1&lt;/sup&gt;, and 0.01 and 1.36 kt CH&lt;sub&gt;4&lt;/sub&gt; yr&lt;sup&gt;-1&lt;/sup&gt;. Larval N&lt;sub&gt;2&lt;/sub&gt;O emissions were only sporadically observed and not upscaled. For one site, a comparison of field- and laboratory-based GHG emission measurements was conducted to assess potential biases introduced by transferring Scarabaeidae larvae to artificial environments. Emission strength and variability of captive larvae decreased significantly within two weeks and the correlation between larval biomass and gaseous carbon emissions disappeared, highlighting the importance of field measurements. Overall, our data show that Scarabaeidae larvae can be significant soil GHG sources and should not be neglected in soil GHG flux research.&lt;/p&gt;


2015 ◽  
Vol 24 (4) ◽  
Author(s):  
Jelena Ariva ◽  
Ants Hannes Viira ◽  
Reet Põldaru ◽  
Jüri Roots

In order to respond to increasing global food demand and provide for national economic growth, the Estonian Dairy Strategy for 2012−2020 aims to achieve a 30% growth in milk production. At the same time, there is a global attempt to reduce greenhouse gas (GHG) emissions. This paper analyses the medium-term (2015−2020) projections for milk production and associated GHG emissions from dairy cows in Estonia. The FAPRI-GOLD type market model of Estonian agriculture, which is used for projections of agricultural production, was supplemented with a module that helps project GHG emissions. The paper demonstrates the endogenisation of GHG emission factors in a relatively general agricultural market model context. The results imply that increasing milk production by 30% by 2020 would jeopardise Estonia’s commitments with regard to agricultural GHG emissions. However, the average GHG emission per tonne of produced milk will decline, thus reducing the “carbon footprint” of milk production.


Sign in / Sign up

Export Citation Format

Share Document