scholarly journals Surface fluxes and the cyclogenesis over north and adjoining central Bay of Bengal during MONTBLEX-1990

MAUSAM ◽  
2021 ◽  
Vol 43 (4) ◽  
pp. 399-402
Author(s):  
O.P. SINGH

Fluxes of sensible heat, latent heat and the momentum have been computed over north and  adjoining central Bay of Bengal ORV Sagar Kanya observations recorded during MONTBLEX:1990. The results show that the energy fluxes increase steeply during the development o f a low/depression and decrease once the system moves away.

2020 ◽  
Vol 66 (258) ◽  
pp. 543-555 ◽  
Author(s):  
Lindsey Nicholson ◽  
Ivana Stiperski

AbstractWe present the first direct comparison of turbulence conditions measured simultaneously over exposed ice and a 0.08 m thick supraglacial debris cover on Suldenferner, a small glacier in the Italian Alps. Surface roughness, sensible heat fluxes (~20–50 W m−2), latent heat fluxes (~2–10 W m−2), topology and scale of turbulence are similar over both glacier surface types during katabatic and synoptically disturbed conditions. Exceptions are sunny days when buoyant convection becomes significant over debris-covered ice (sensible heat flux ~ −100 W m−2; latent heat flux ~ −30 W m−2) and prevailing katabatic conditions are rapidly broken down even over this thin debris cover. The similarity in turbulent properties implies that both surface types can be treated the same in terms of boundary layer similarity theory. The differences in turbulence between the two surface types on this glacier are dominated by the radiative and thermal contrasts, thus during sunny days debris cover alters both the local surface turbulent energy fluxes and the glacier component of valley circulation. These variations under different flow conditions should be accounted for when distributing temperature fields for modeling applications over partially debris-covered glaciers.


2013 ◽  
Vol 17 (14) ◽  
pp. 1-22 ◽  
Author(s):  
Allison L. Steiner ◽  
Dori Mermelstein ◽  
Susan J. Cheng ◽  
Tracy E. Twine ◽  
Andrew Oliphant

Abstract Atmospheric aerosols scatter and potentially absorb incoming solar radiation, thereby reducing the total amount of radiation reaching the surface and increasing the fraction that is diffuse. The partitioning of incoming energy at the surface into sensible heat flux and latent heat flux is postulated to change with increasing aerosol concentrations, as an increase in diffuse light can reach greater portions of vegetated canopies. This can increase photosynthesis and transpiration rates in the lower canopy and potentially decrease the ratio of sensible to latent heat for the entire canopy. Here, half-hourly and hourly surface fluxes from six Flux Network (FLUXNET) sites in the coterminous United States are evaluated over the past decade (2000–08) in conjunction with satellite-derived aerosol optical depth (AOD) to determine if atmospheric aerosols systematically influence sensible and latent heat fluxes. Satellite-derived AOD is used to classify days as high or low AOD and establish the relationship between aerosol concentrations and the surface energy fluxes. High AOD reduces midday net radiation by 6%–65% coupled with a 9%–30% decrease in sensible and latent heat fluxes, although not all sites exhibit statistically significant changes. The partitioning between sensible and latent heat varies between ecosystems, with two sites showing a greater decrease in latent heat than sensible heat (Duke Forest and Walker Branch), two sites showing equivalent reductions (Harvard Forest and Bondville), and one site showing a greater decrease in sensible heat than latent heat (Morgan–Monroe). These results suggest that aerosols trigger an ecosystem-dependent response to surface flux partitioning, yet the environmental drivers for this response require further exploration.


2020 ◽  
Vol 42 ◽  
pp. e39
Author(s):  
Rubmara Ketzer Oliveira ◽  
Luciano Sobral Fraga Junior ◽  
Larissa Brêtas Moura ◽  
Debora Regina Roberti ◽  
Felipe Gustavo Pilau

Brazil is the main sugarcane producer in the world, which is intended for various purposes, from food to power generation. Soybean cultivation in areas of sugarcane under renewal has been growing progressively in Brazil. Quantifying energy fluxes at different stages of this process is essential for better management. The work was carried out in Piracicaba city, with the objective of analyzing the behavior of energy fluxes and the closing of the energy balance in a sugarcane renewal area with a fallow period followed by soybean cultivation. The latent and sensitive heat fluxes were obtained with the “Eddy covariance” method. The closing of the energy balance in the fallow period with straw-covered uncovered and soybean-cultivated soil presented a correlation coefficient of 0.88, 0.78 and 0.71, respectively. In the period without cultivation, the sensible heat flux was predominant in relation to the latent heat flux, varying according to the rainfall regime. The presence of straw under the soil in the fallow period affected the latent heat flux. With soybean cultivation, the latent heat flux surpassed the sensible heat flux.


2020 ◽  
Vol 77 (9) ◽  
pp. 3211-3225
Author(s):  
Kristine F. Haualand ◽  
Thomas Spengler

Abstract The convoluted role of surface sensible and latent heat fluxes on moist baroclinic development demands a better understanding to disentangle their local and remote effects. Including diabatic effects in the Eady model, the direct effects of surface fluxes on the diabatic generation of eddy available potential energy as well as their indirect effects through modifications of the circulation and latent heating are investigated. It is shown that surface sensible heat fluxes have a minor impact, irrespective of their position and parameterization, while latent heating in the region equivalent to the warm conveyor belt is the dominant diabatic source for development. Downward surface sensible heat fluxes in proximity of the warm conveyor belt results in structural modifications that increase the conversion from basic-state available potential energy to eddy available potential energy, while concomitantly weakening the ascent and hence latent heating. The detrimental effects are easily compensated through provision of additional moisture into the warm conveyor belt. Upward surface heat fluxes in the cold sector, on the other hand, are detrimental to growth. When downward (upward) surface sensible heat fluxes are located below the equivalent of the warm conveyor belt, the diabatically induced PV anomaly at the bottom of the latent heating layer becomes dominant (less dominant). Shifting the downward surface sensible heat fluxes away from the warm conveyor belt results in substantial changes in the growth rate, latent heat release, low-level structure, and energetics, where the effect of surface sensible heat fluxes might even be beneficial.


Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 299
Author(s):  
Noman Ali Buttar ◽  
Hu Yongguang ◽  
Josef Tanny ◽  
M Waqar Akram ◽  
Abdul Shabbir

Precise estimation of surface-atmosphere exchange is a major challenge in micrometeorology. Previous literature presented the eddy covariance (EC) as the most reliable method for the measurements of such fluxes. Nevertheless, the EC technique is quite expensive and complex, hence other simpler methods are sought. One of these methods is Flux-Variance (FV). The FV method estimates sensible heat flux (H) using high frequency (~10Hz) air temperature measurements by a fine wire thermocouple. Additional measurements of net radiation (Rn) and soil heat flux (G) allow the derivation of latent heat flux (LE) as the residual of the energy balance equation. In this study, the Flux Variance method was investigated, and the results were compared against eddy covariance measurements. The specific goal of the present study was to assess the performance of the FV method for the estimation of surface fluxes along a variable fetch. Experiment was carried out in a tea garden; an EC system measured latent and sensible heat fluxes and five fine-wire thermocouples were installed towards the wind dominant direction at different distances (fetch) of TC1 = 170 m, TC2 = 165 m, TC3 = 160 m, TC4 = 155 m and TC5 = 150 m from the field edge. Footprint analysis was employed to examine the effect of temperature measurement position on the ratio between 90% footprint and measurement height. Results showed a good agreement between FV and EC measurements of sensible heat flux, with all regression coefficients (R2) larger than 0.6; the sensor at 170 m (TC1), nearest to the EC system, had highest R2 = 0.86 and lowest root mean square error (RMSE = 25 Wm−2). The estimation of LE at TC1 was also in best agreement with eddy covariance, with the highest R2 = 0.90. The FV similarity constant varied along the fetch within the range 2.2–2.4.


2020 ◽  
Author(s):  
Hai Bui ◽  
Thomas Spengler

<p class="p1"><span class="s1">The sea surface temperature (SST) distribution can modulate the development of extratropical cyclones through sensible and latent heat fluxes. However, the direct and indirect effects of these surface fluxes, and thus the SST, are still not well understood. This study tackles this problem using idealised channel simulations of moist baroclinic development under the influence of surface fluxes. The model is initialised with a zonal wind field resembling the midlatitude jet and a different SST distribution for each experiment, where both the strength and position of the SST gradient are varied.</span></p> <p class="p1"><span class="s1">The surface latent heat flux plays a key role in enhancing the moist baroclinic development, while the sensible heat fluxes play a minor and dampening role. The additional moisture provided by the latent heat fluxes originates from about 1000 km ahead of the cyclone a day prior to the time of the most rapid deepening. When the SST in this region is higher than 15 degrees Celsius, the additional latent heat is conducive to explosive cyclone development. A high absolute SST with a weak SST gradient, however, can lead to a delay of the deepening stage, because of unorganised convection at early stages. In addition, the cyclone can maintain its intensity for a longer period with an SST above 20 degrees Celsius, because there is a continuous and extensive moisture supply from the surface. The cyclone in this case has characteristics of a hybrid cyclone, where the latent heat release near the cyclone’s centre plays a major role in the development.</span></p>


2017 ◽  
Vol 18 (7) ◽  
pp. 1809-1829 ◽  
Author(s):  
Peng Zhao ◽  
Xiaotao Zhang ◽  
Sien Li ◽  
Shaozhong Kang

Abstract For sparse planting crops, soil surface plays an important role in energy balance processes within the soil–canopy–atmosphere continuum; thus, it is necessary to partition field energy fluxes into soil surface and canopy to provide useful information to reduce agricultural water use and to develop evapotranspiration models. Field experiments were conducted in vineyards during four growing seasons to examine the energy partitioning among soil surface, canopy, and field separately. Vineyard energy fluxes including latent heat (LE) were measured by eddy covariance system and canopy latent heat LEc was obtained from sap flow. Then, soil surface latent heat LEs was calculated as the difference between LE and LEc. The Bowen ratio and the ratio of latent heat to available energy were used to examine energy partitioning. Results indicate daily and hourly LEs obtained from LE and LEc overestimated microlysimeter-derived values by 13.0% and 10.8%, respectively. Seasonal-average latent heat accounted for 59.0%–64.3%, 65.8%–77.8%, and 56.6%–62.5% of corresponding available energy for vineyard, canopy, and soil surface, respectively. Soil water content and canopy were the main controlling factors on energy partitioning. Surface soil moisture explained 32%, 11%, and 52% of the seasonal variability in energy partitioning at field, canopy, and soil surface, respectively. Leaf area index explained 41% and 26% of the seasonal variability in energy partitioning at field and soil surface. Air temperature was related to canopy and field energy partitioning. During wet periods, soil can absorb sensible heat from the canopy and LEs may exceed soil surface available energy, while during dry periods, the canopy may absorb sensible heat from the soil and LEc may exceed canopy available energy.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 322
Author(s):  
Francesc Castellví ◽  
Pedro Gavilán

Often in agrometeorology the instrumentation required to estimate turbulent surface fluxes must be installed at sites where fetch is not sufficient for a sector of wind directions. For different integrated flux-footprints (IFFP) thresholds and taking as a reference the half-hourly latent heat fluxes (LE) measured with a large weighing lysimeter (LELys), the eddy covariance (EC) method and two methods based on surface renewal (SR) analysis to estimate LE were tested over short fescue grass. One method combined SR with the flux-gradient (profile) relationship, SR-P method, and the other with the dissipation method, SR-D method. When LE was estimated using traces of air moisture, good performances were obtained using the EC and the SR-P methods for samples with IFFP higher than 85%. However, the closest LE estimates were obtained using the residual method. For IFFP higher than 50%, the residual method combined with the sensible heat flux estimates determined using the SR-P method performed close to LELys and using the SR-D method good estimates were obtained for accumulated LELys. To estimate the sensible heat flux, the SR-D method can be recommended for day-to-day use by farmers because it is friendly and affordable.


2018 ◽  
Author(s):  
Andrei Serafimovich ◽  
Stefan Metzger ◽  
Jörg Hartmann ◽  
Katrin Kohnert ◽  
Donatella Zona ◽  
...  

Abstract. The objective of this study was to upscale airborne flux measurements of sensible heat and latent heat and to develop high resolution flux maps. In order to support the evaluation of coupled atmospheric/land–surface models we investigated spatial patterns of energy fluxes in relation to land–surface properties. We used airborne eddy-covariance measurements acquired by the POLAR 5 research aircraft in June–July 2012 to analyze surface fluxes. Footprint-weighted surface properties were then related to 21 529 sensible heat flux observations and 25 608 latent heat flux observations using both remote sensing and modelled data. A boosted regression tree technique was used to estimate environmental response functions between spatially and temporally resolved flux observations and corresponding biophysical and meteorological drivers. In order to improve the spatial coverage and spatial representativeness of energy fluxes we used relationships extracted across heterogeneous Arctic landscapes to infer high-resolution surface energy flux maps, thus directly upscaling the observational data. These maps of projected sensible heat and latent heat fluxes were used to assess energy partitioning in northern ecosystems and to determine the dominant energy exchange processes in permafrost areas. This allowed us to estimate energy fluxes for specific types of land cover, taking into account meteorological conditions. Airborne and modelled fluxes were then compared with measurements from an eddy-covariance tower near Atqasuk. Our results are an important contribution for the advanced, scale-dependent quantification of surface energy fluxes and provide new insights into the processes affecting these fluxes for the main vegetation types in high-latitude permafrost areas.


2010 ◽  
Vol 7 (1) ◽  
pp. 593-619
Author(s):  
G. N. Flerchinger ◽  
D. Marks ◽  
M. L. Reba ◽  
Q. Yu ◽  
M. S. Seyfried

Abstract. Understanding the role of ecosystems in modulating energy, water and carbon fluxes is critical to quantifying the variability in energy, carbon, and water balances across landscapes. This study compares and contrasts the seasonal surface fluxes of sensible heat, latent heat and carbon fluxes measured over different vegetation in a rangeland mountainous environment within the Reynolds Creek Experimental Watershed. Eddy covariance systems were used to measure surface fluxes over low sagebrush (Artemesia arbuscula), aspen (Populus tremuloides) and the understory of grasses and forbs beneath the aspen canopy. Peak leaf area index of the sagebrush, aspen, and aspen understory was 0.77, 1.35, and 1.20, respectively. The sagebrush and aspen canopies were subject to similar meteorological forces, while the understory of the aspen was sheltered from the wind. Estimated cumulative evapotranspiratation from the sagebrush, aspen understory, and aspen trees were 399 mm, 205 mm and 318 mm. A simple water balance of the catchment indicated that of the 700 mm of areal average precipitation, 442 mm was lost to evapotranspiration, and 254 mm of streamflow was measured from the catchment; water balance closure for the catchment was within 7 mm. Fluxes of latent heat and carbon for all sites were minimal through the winter. Growing season fluxes of latent heat and carbon were consistently higher above the aspen canopy than from the other sites. While growing season carbon fluxes were very similar for the sagebrush and aspen understory, latent heat fluxes for the sagebrush were consistently higher. Higher evapotranspiration from the sagebrush was likely because it is more exposed to the wind. Sensible heat flux from the aspen tended to be slightly less than the sagebrush site during the growing season when the leaves were actively transpiring, but exceeded that from the sagebrush in May, September and October when the net radiation was offset by evaporative cooling. Results from this study illustrate the influence of vegetation on the spatial variability of surface fluxes across mountainous rangeland landscapes.


Sign in / Sign up

Export Citation Format

Share Document