scholarly journals The diffuse component of the global solar radiation at Qena / Egypt

MAUSAM ◽  
2021 ◽  
Vol 49 (4) ◽  
pp. 469-474
Author(s):  
Dr. SAYED. M. EL. SHAZLY

Diffuse solar radiation on horizontal surfaces is estimated at Qena / Egypt. The basic procedure is to develop relationships of the widespread use Liu & Jordan types between the daily global horizontal radiation (G) and its diffuse component (D) using measured values of these two quantities. An error analysis has been done for the results of diffuse radiation calculated using the regression models obtained in this paper and those estimated from other known ones of the Liu & Jordan type, According to statistical evaluation of the various relationships, it is seen that our models provide the best estimation of the diffuse radiation, Effect of climatic conditions was considered in the discussion.

2005 ◽  
Vol 128 (1) ◽  
pp. 104-117 ◽  
Author(s):  
T. Muneer ◽  
S. Munawwar

Solar energy applications require readily available, site-oriented, and long-term solar data. However, the frequent unavailability of diffuse irradiation, in contrast to its need, has led to the evolution of various regression models to predict it from the more commonly available data. Estimating the diffuse component from global radiation is one such technique. The present work focuses on improvement in the accuracy of the models for predicting horizontal diffuse irradiation using hourly solar radiation database from nine sites across the globe. The influence of sunshine fraction, cloud cover, and air mass on estimation of diffuse radiation is investigated. Inclusion of these along with hourly clearness index, leads to the development of a series of models for each site. Estimated values of hourly diffuse radiation are compared with measured values in terms of error statistics and indicators like, R2, mean bias deviation, root mean square deviation, skewness, and kurtosis. A new method called “the accuracy score system” is devised to assess the effect on accuracy with subsequent addition of each parameter and increase in complexity of equation. After an extensive evaluation procedure, extricate but adequate models are recommended as optimum for each of the nine sites. These models were found to be site dependent but the model types were fairly consistent for neighboring stations or locations with similar climates. Also, this study reveals a significant improvement from the conventional k-kt regression models to the presently proposed models.


2019 ◽  
Author(s):  
Hou Jiang ◽  
Ning Lu ◽  
Jun Qin ◽  
Ling Yao

Abstract. Surface solar radiation drives the water cycle and energy exchange on the earth's surface, being an indispensable parameter for many numerical models to estimate soil moisture, evapotranspiration and plant photosynthesis, and its diffuse component can promote carbon uptake in ecosystems as a result of improvements of plant productivity by enhancing canopy light use efficiency. To reproduce the spatial distribution and spatiotemporal variations of solar radiation over China, we generate the high-accuracy radiation datasets, including global solar radiation (GSR) and the diffuse radiation (DIF) with spatial resolution of 1/20 degree, based on the observations from the China Meteorology Administration (CMA) and Multi-functional Transport Satellite (MTSAT) satellite data, after tackling the integration of spatial pattern and the simulation of complex radiation transfer that the existing algorithms puzzle about by means of the combination of convolutional neural network (CNN) and multi-layer perceptron (MLP). All data cover a period from 2007 to 2018 in hourly, daily total and monthly total scales. The validation in 2008 shows that the root mean square error (RMSE) between our datasets and in-situ measurements approximates 73.79 W/m2 (0.27 MJ/m2) and 58.22 W/m2 (0.21 MJ/m2) for GSR and DIF, respectively. Besides, the spatially continuous hourly estimates properly reflect the regional differences and restore the diurnal cycles of solar radiation in fine scales. Such accurate knowledge is useful for the prediction of agricultural yield, carbon dynamics of terrestrial ecosystems, research on regional climate changes, and site selection of solar power plants etc. The datasets are freely available from Pangaea at https://doi.org/10.1594/PANGAEA.904136 (Jiang and Lu, 2019).


1996 ◽  
Vol 14 (10) ◽  
pp. 1051-1059 ◽  
Author(s):  
A. B. Bhattacharya ◽  
S. K. Kar ◽  
R. Bhattacharya

Abstract. Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another.


Author(s):  
Pramod Kumar Yadava ◽  
Manoj K. Srivastava ◽  
Priyanshu Gupta ◽  
Rajeev K. Singh ◽  
Divya Prakash Yadav ◽  
...  

The paper presents the seasonal solar radiations over Varanasi (25°20' N, 83° 00' E 81.1m altitude) in Eastern Uttar Pradesh (UP) in India. An investigation on solar radiation over Varanasi station, India is carried out by using the five years (2010-2014) recorded direct, diffuse, and global radiations data obtained from the radiation unit installed by India Meteorological Department (IMD) at Banaras Hindu University (BHU) campus. Analyses of winter (December, January, and February), summer (March, April, and May), monsoon season (June, July, August, September), and post monsoon (October, November) period shows that diffuse solar radiation is maximum (~1.42 MJ/m2) during monsoon season in 2012 at 12:00 IST and global solar radiation is maximum (~2.9 MJ/m2) during summer season in 2012 at 13:00 IST. The results of solar radiation are further analyzed with the aerosols optical depth over Varanasi. The increase in diffuse radiation are found to be well correlated (R= 0.67) with higher values of aerosols optical depth during summer over Varanasi.


Irriga ◽  
2002 ◽  
Vol 7 (2) ◽  
pp. 123-129
Author(s):  
Eduardo Nardini Gomes ◽  
João Francisco Escobedo

MODELOS DE ESTIMATIVA DA RADIAÇÃO FOTOSSINTETICAMENTE ATIVA GLOBAL E DIFUSA EM FUNÇÃO DA RADIAÇÃO DE ONDAS CURTAS E DO ÍNDICE DE CLARIDADE (Kt)   Eduardo Nardini GomesJoão Francisco EscobedoDepartamento de Recursos Naturais, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, CP 237, CEP 18603-970, Botucatu – SP, Fone: (0xx14) 6802-7162   1 RESUMO  O presente trabalho apresenta equações de estimativa da radiação fotossinteticamente ativa global () e difusa () em função das respectivas radiações global () e difusa () do espectro solar total, bem como a estimativa da fração PAR difusa da PAR global () em função do índice de transmissividade atmosférica ().A base de dados foi adquirida no período de 01/06/1999 a 31/09/2000 na Estação de Radiometria Solar da FCA-UNESP, Botucatu. Foram utilizados dados adicionais, diferentes dos utilizados na geração dos modelos, de forma a possibilitar uma validação adequada dos modelos propostos.   UNITERMOS: radiação fotossinteticamente ativa global e difusa, transmissividade atmosférica, modelos de estimativa da radiação solar.   GOMES, E.N., ESCOBEDO, J.F  MODELS FOR GLOBAL AND DIFFUSE PHOTOSYNTHETICALLY ACTIVE RADIATION IN RELATION TO GLOBAL, DIFFUSE RADIATION  AND CLEARNESS INDEX.   2 SUMMARY  This work describes typical correlations between global solar radiation () and its global PAR component (), diffuse solar radiation () and its diffuse PAR component (), clearness index () and the diffuse PAR fraction of global PAR (). Database was recorded from June 1st 1999 to September 31st 2000 at the  Solar Radiometric Station, Botucatu, SP. Additional data which are not part of the model development were used to validate each  proposed model.  KEYWORDS: global and diffuse photosynthetically active radiation, clearness index, estimating models.


2020 ◽  
Vol 12 (1) ◽  
pp. 32-39
Author(s):  
R.S. Sa’id ◽  
S.I. Akor ◽  
U.M. Gana

This paper proposes empirical correlation models for estimating global solar radiation using data of sunshine hours for the location of Makurdi in Benue State of Nigeria. The paper suggests extrapolation of the empirical models for other locations with similar climatic conditions. The proposed models are: Linear, Quadratic, Cubic, Exponential, Power and Logarithmic models. Each of the models is based on Angstrom-Prescott equations for estimating global solar radiation. Any of the models can ease the use of sophisticated equipments, which are expensive, delicate and sometimes develop faults during measurement. The results of the models show that the cubic model is the best with slightly higher coefficient of  determination. The coefficient of  determination of each of the models was found to be 0.952, 0.965, 0.967, 0.965, 0.948& 0.924 respectively, while the absolute correlation was found to be unity. Errors evaluated include MBE, RMSE and MPE with minimal values. The percentage diffuse and direct solar radiations, clearness index and the diffuse fraction were also estimated using the models. The results of the estimations done using the proposed models indicate that there is an estimated average annual global solar radiation of 6056MJm-2, monthly value of 505MJm-2 and daily insolation of 16.82MJm-2 sufficient enough for maximum solar radiation exploitation. Keywords: Solar Radiation, Empirical Models, Diffuse Radiation, Direct Radiation


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 524
Author(s):  
Jihui Yuan ◽  
Kazuo Emura ◽  
Craig Farnham

The Typical meteorological year (TMY) database is often used to calculate air-conditioning loads, and it directly affects the building energy savings design. Among four kinds of TMY databases in China—including Chinese Typical Year Weather (CTYW), International Weather for Energy Calculations (IWEC), Solar Wind Energy Resource Assessment (SWERA) and Chinese Standard Weather Data (CSWD)—only CSWD is measures solar radiation, and it is most used in China. However, the solar radiation of CSWD is a measured daily value, and its hourly value is separated by models. It is found that the cloud ratio (diffuse solar radiation divided by global solar radiation) of CSWD is not realistic in months of May, June and July while compared to the other sets of TMY databases. In order to obtain a more accurate cloud ratio of CSWD for air-conditioning load calculation, this study aims to propose a method of refining the cloud ratio of CSWD in Shanghai, China, using observed solar radiation and the Perez model which is a separation model of high accuracy. In addition, the impact of cloud ratio on air-conditioning load has also been discussed in this paper. It is shown that the cloud ratio can yield a significant impact on the air conditioning load.


2014 ◽  
Vol 14 (22) ◽  
pp. 12251-12270 ◽  
Author(s):  
V. De Bock ◽  
H. De Backer ◽  
R. Van Malderen ◽  
A. Mangold ◽  
A. Delcloo

Abstract. At Uccle, Belgium, a long time series (1991–2013) of simultaneous measurements of erythemal ultraviolet (UV) dose (Sery), global solar radiation (Sg), total ozone column (Q_{O3}$) and aerosol optical depth (τaer) (at 320.1 nm) is available, which allows for an extensive study of the changes in the variables over time. Linear trends were determined for the different monthly anomalies time series. Sery, Sg and QO3 all increase by respectively 7, 4 and 3% per decade. τaer shows an insignificant negative trend of −8% per decade. These trends agree with results found in the literature for sites with comparable latitudes. A change-point analysis, which determines whether there is a significant change in the mean of the time series, is applied to the monthly anomalies time series of the variables. Only for Sery and QO3, was a significant change point present in the time series around February 1998 and March 1998, respectively. The change point in QO3 corresponds with results found in the literature, where the change in ozone levels around 1997 is attributed to the recovery of ozone. A multiple linear regression (MLR) analysis is applied to the data in order to study the influence of Sg, QO3 and τaer on Sery. Together these parameters are able to explain 94% of the variation in Sery. Most of the variation (56%) in Sery is explained by Sg. The regression model performs well, with a slight tendency to underestimate the measured Sery values and with a mean absolute bias error (MABE) of 18%. However, in winter, negative Sery are modeled. Applying the MLR to the individual seasons solves this issue. The seasonal models have an adjusted R2 value higher than 0.8 and the correlation between modeled and measured Sery values is higher than 0.9 for each season. The summer model gives the best performance, with an absolute mean error of only 6%. However, the seasonal regression models do not always represent reality, where an increase in Sery is accompanied with an increase in QO3 and a decrease in τaer. In all seasonal models, Sg is the factor that contributes the most to the variation in Sery, so there is no doubt about the necessity to include this factor in the regression models. The individual contribution of τaer to Sery is very low, and for this reason it seems unnecessary to include τaer in the MLR analysis. Including QO3, however, is justified to increase the adjusted R2 and to decrease the MABE of the model.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Orhan Ekren

Characteristics of site-specific solar irradiation is required to optimize a solar energy system. If no tracking system is used, the amount of electricity or heat produced by solar energy depends on the total solar radiation on a tilted surface. Although pyranometer measures direct plus diffuse solar radiation on a horizontal surface, there are many locations where diffuse radiation is not measured. Also, diffuse radiation is necessary to determine the total radiation on a tilted surface. Therefore, in this study, new correlations for diffuse solar radiation is proposed as a function of atmospheric parameters for Urla (Izmir, Turkey). After applying the statistical procedure on the measured data, seven new correlations are proposed for the ratio of hourly average diffuse and total radiation. Also, the ratio of monthly average daily diffuse and total radiation for this region is proposed.


Sign in / Sign up

Export Citation Format

Share Document