scholarly journals Boundary layer characteristics associated with sea breeze circulation over Cochin

MAUSAM ◽  
2021 ◽  
Vol 58 (1) ◽  
pp. 75-86
Author(s):  
HAMZA V ◽  
C. A. BABU

Features of sea and land breezes, surface fluxes and drag coefficient over Cochin are studied using more than 300 daily observations of air temperature, wind speed and direction data. The duration and intensity of sea breeze circulation vary with the rain or cloud as it reduces the differential heating. Onset of sea breeze is early in summer season for the near equatorial station compared to winter season. Cessation is almost same for all seasons and is around 1900 hours. The sea breeze circulation is almost westerly and land breeze circulation is almost easterly in all the seasons. It is found that in most of the cases, the temperature and wind speed decreases at the time of onset of sea breeze and turning of wind direction with height becomes counter clockwise (backing) during the transition period from land breeze to sea breeze. In all seasons, the momentum flux is directed downward. High values of momentum flux were found during the presence of sea breeze in pre-monsoon season. Average sensible heat flux is directed upward during the entire period and during nighttime it is almost zero in the winter and monsoon seasons. The intensity of momentum flux decreases during onset and cessation of sea breeze for all the cases. The cold air advection associated with the sea breeze results in the decrease of sensible heat flux at the time of onset of sea breeze. Averaged surface momentum and sensible flux patterns resemble closely to the instantaneous pattern for all the seasons. Generally, sea breeze is stronger than land breeze in all the seasons. Accordingly, the drag coefficient power relationship with wind is different for sea breeze and land breeze circulations.Key words – Sea breeze circulation, Monsoon boundary layer, Surface fluxes, Drag coefficient, Diurnal variation.

1995 ◽  
Vol 34 (2) ◽  
pp. 559-571 ◽  
Author(s):  
J. C. Doran ◽  
W. J. Shaw ◽  
J. M. Hubbe

Abstract This paper describes results from a June 1992 field program to study the response of the boundary layer over a site with well-defined extreme differences in sensible and latent heat fluxes over clearly separated areas, each with characteristic length scales of 10 km or more. The experiment region consisted of semiarid grassland steppe and irrigated farmland. Sensible heat flux maxima over the steppe regularly reached values in excess of 300 W m−2 and were typically a factor of 4 or more greater than those over the farmland. Two days were selected for analysis: one with moderate winds of 7–10 m s−1 and one with lighter winds of 4–7 m s−1 over the steppe. In both cases the wind directions were nearly perpendicular to the boundary between the steppe and farm. An analysis of potential temperature soundings showed that mixed-layer characteristics over both the farm and the steppe were largely determined by heating over the steppe, with advection from the steppe to the farm playing a significant role. On the day with the lighter winds, a secondary circulation related to the thermal contrasts between the two areas was observed. A simple conceptual model is described that predicts the extent of the cooler area required to generate such circulations. The observations illustrate how predictions of boundary layer structure in terms of local surface sensible heat fluxes may be compromised by advective effects. Such difficulties complicate efforts to obtain accurate representations of surface fluxes over inhomogeneous surfaces even if parameterizations of mesoscale contributions to the heat flux are included.


2020 ◽  
Vol 13 (6) ◽  
pp. 3221-3233 ◽  
Author(s):  
Andreas Behrendt ◽  
Volker Wulfmeyer ◽  
Christoph Senff ◽  
Shravan Kumar Muppa ◽  
Florian Späth ◽  
...  

Abstract. We present the first measurement of the sensible heat flux (H) profile in the convective boundary layer (CBL) derived from the covariance of collocated vertical-pointing temperature rotational Raman lidar and Doppler wind lidar measurements. The uncertainties of the H measurements due to instrumental noise and limited sampling are also derived and discussed. Simultaneous measurements of the latent heat flux profile (L) and other turbulent variables were obtained with the combination of water-vapor differential absorption lidar (WVDIAL) and Doppler lidar. The case study uses a measurement example from the HOPE (HD(CP)2 Observational Prototype Experiment) campaign, which took place in western Germany in 2013 and presents a cloud-free well-developed quasi-stationary CBL. The mean boundary layer height zi was at 1230 m above ground level. The results show – as expected – positive values of H in the middle of the CBL. A maximum of (182±32) W m−2, with the second number for the noise uncertainty, is found at 0.5 zi. At about 0.7 zi, H changes sign to negative values above. The entrainment flux was (-62±27) W m−2. The mean sensible heat flux divergence in the observed part of the CBL above 0.3 zi was −0.28 W m−3, which corresponds to a warming of 0.83 K h−1. The L profile shows a slight positive mean flux divergence of 0.12 W m−3 and an entrainment flux of (214±36) W m−2. The combination of H and L profiles in combination with variance and other turbulent parameters is very valuable for the evaluation of large-eddy simulation (LES) results and the further improvement and validation of turbulence parameterization schemes.


2013 ◽  
Vol 17 (14) ◽  
pp. 1-22 ◽  
Author(s):  
Allison L. Steiner ◽  
Dori Mermelstein ◽  
Susan J. Cheng ◽  
Tracy E. Twine ◽  
Andrew Oliphant

Abstract Atmospheric aerosols scatter and potentially absorb incoming solar radiation, thereby reducing the total amount of radiation reaching the surface and increasing the fraction that is diffuse. The partitioning of incoming energy at the surface into sensible heat flux and latent heat flux is postulated to change with increasing aerosol concentrations, as an increase in diffuse light can reach greater portions of vegetated canopies. This can increase photosynthesis and transpiration rates in the lower canopy and potentially decrease the ratio of sensible to latent heat for the entire canopy. Here, half-hourly and hourly surface fluxes from six Flux Network (FLUXNET) sites in the coterminous United States are evaluated over the past decade (2000–08) in conjunction with satellite-derived aerosol optical depth (AOD) to determine if atmospheric aerosols systematically influence sensible and latent heat fluxes. Satellite-derived AOD is used to classify days as high or low AOD and establish the relationship between aerosol concentrations and the surface energy fluxes. High AOD reduces midday net radiation by 6%–65% coupled with a 9%–30% decrease in sensible and latent heat fluxes, although not all sites exhibit statistically significant changes. The partitioning between sensible and latent heat varies between ecosystems, with two sites showing a greater decrease in latent heat than sensible heat (Duke Forest and Walker Branch), two sites showing equivalent reductions (Harvard Forest and Bondville), and one site showing a greater decrease in sensible heat than latent heat (Morgan–Monroe). These results suggest that aerosols trigger an ecosystem-dependent response to surface flux partitioning, yet the environmental drivers for this response require further exploration.


2017 ◽  
Vol 56 (12) ◽  
pp. 3167-3185 ◽  
Author(s):  
Derek D. Jensen ◽  
Timothy A. Price ◽  
Daniel F. Nadeau ◽  
Jacob Kingston ◽  
Eric R. Pardyjak

AbstractData collected during a multiyear, wind-resource assessment over a multi-land-use coastal environment in Belize are used to study the development and decay of wind and turbulence through the morning and evening transitions. Observations were made on three tall masts, forming an inland transect of approximately 5 km. The wind distribution is found to be bimodal and governed by synoptic scales, with onshore and offshore flow regimes. The behavior between the coastal and inland sites is found to be very similar when the flow is directed offshore; for onshore flow, stark differences occur. The mean wind speed at the coastal site is approximately 20% greater than the most inland site and is nearly constant throughout the diurnal cycle. For both flow regimes, the influence of the land–sea breeze circulation is inconsequential relative to the large-scale synoptic forcing. Composite time series are used to study the evolution of sensible heat flux and turbulence kinetic energy (TKE) throughout the morning and evening transitions. The TKE budget reveals that at the coastal site mechanical production of TKE is much more important than buoyant production. This allows for the unexpected case in which TKE increases through the ET despite the decrease of buoyant TKE production. Multiresolution flux decomposition is used to further study this phenomenon as well as the evolution of the sensible heat flux at differing time scales. An idealized schematic is presented to illustrate the timing and structure of the morning and evening transitions for an inland site and a coastal site that are subjected to similar synoptic forcing.


2019 ◽  
Vol 76 (4) ◽  
pp. 1039-1053
Author(s):  
J. M. Edwards

Abstract The effect of frictional dissipative heating on the calculation of surface fluxes in the atmospheric boundary layer using bulk flux formulas is considered. Although the importance of frictional dissipation in intense storms has been widely recognized, it is suggested here that its impact is also to be seen at more moderate wind speeds in apparently enhanced heat transfer coefficients and countergradient fluxes in nearly neutral conditions. A simple modification to the bulk flux formula can be made to account for its impact within the surface layer. This modification is consistent with an interpretation of the surface layer as one across which the flux of total energy is constant. The effect of this modification on tropical cyclones is assessed in an idealized model, where it is shown to reduce the predicted maximum wind speed by about 4%. In numerical simulations of three individual storms, the impacts are more subtle but indicate a reduction of the sensible heat flux into the storm and a cooling of the surface layer.


Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 299
Author(s):  
Noman Ali Buttar ◽  
Hu Yongguang ◽  
Josef Tanny ◽  
M Waqar Akram ◽  
Abdul Shabbir

Precise estimation of surface-atmosphere exchange is a major challenge in micrometeorology. Previous literature presented the eddy covariance (EC) as the most reliable method for the measurements of such fluxes. Nevertheless, the EC technique is quite expensive and complex, hence other simpler methods are sought. One of these methods is Flux-Variance (FV). The FV method estimates sensible heat flux (H) using high frequency (~10Hz) air temperature measurements by a fine wire thermocouple. Additional measurements of net radiation (Rn) and soil heat flux (G) allow the derivation of latent heat flux (LE) as the residual of the energy balance equation. In this study, the Flux Variance method was investigated, and the results were compared against eddy covariance measurements. The specific goal of the present study was to assess the performance of the FV method for the estimation of surface fluxes along a variable fetch. Experiment was carried out in a tea garden; an EC system measured latent and sensible heat fluxes and five fine-wire thermocouples were installed towards the wind dominant direction at different distances (fetch) of TC1 = 170 m, TC2 = 165 m, TC3 = 160 m, TC4 = 155 m and TC5 = 150 m from the field edge. Footprint analysis was employed to examine the effect of temperature measurement position on the ratio between 90% footprint and measurement height. Results showed a good agreement between FV and EC measurements of sensible heat flux, with all regression coefficients (R2) larger than 0.6; the sensor at 170 m (TC1), nearest to the EC system, had highest R2 = 0.86 and lowest root mean square error (RMSE = 25 Wm−2). The estimation of LE at TC1 was also in best agreement with eddy covariance, with the highest R2 = 0.90. The FV similarity constant varied along the fetch within the range 2.2–2.4.


2012 ◽  
Vol 51 (6) ◽  
pp. 1099-1110 ◽  
Author(s):  
Yanlian Zhou ◽  
Weimin Ju ◽  
Xiaomin Sun ◽  
Xuefa Wen ◽  
Dexin Guan

AbstractAerodynamic roughness length zom is an important parameter for reliably simulating surface fluxes. It varies with wind speed, atmospheric stratification, terrain, and other factors. However, it is usually considered a constant. It is known that uncertainties in zom result in latent heat flux (LE) simulation errors, since zom links LE with aerodynamic resistance. The effects of zom on sensible heat flux (SH) simulation are usually neglected because there is no direct link between the two. By comparing SH simulations with three types of zom inputs, it is found that allowing zom temporal variation in an SH simulation model significantly improves agreement between simulated and measured SH and also decreases the sensitivity of the SH model to the heat transfer coefficient Ct, which in turn determines the linkage between zom and thermal roughness length zoh.


1994 ◽  
Vol 12 (6) ◽  
pp. 574-584
Author(s):  
Zafer Aslan ◽  
Krishnaier Natarajan ◽  
Mehmet Tankut

Abstract. This paper discusses the preliminary results of a study on the vegetation pattern and its relationship with meteorological parameters in and around Istanbul. The study covers an area of over 6800 km2 consisting of urban and suburban centers, and uses the visible and near-infrared bands of Landsat. The spatial variation of the Normalized Difference Vegetation Index (NDVI) and meteorological parameters such as sensible heat flux, momentum flux, relative humidity, moist static energy, rainfall rate and temperature have been investigated based on observations in ten stations in the European (Thracian) and Anatolian parts of Istanbul. NDVI values have been evaluated from the Landsat data for a single day, viz. 24 October 1986, using ERDAS in ten different classes. The simultaneous spatial variations of sensible heat and momentum fluxes have been computed from the wind and temperature profiles using the Monin-Obukhov similarity theory. The static energy variations are based on the surface meteorological observations. There is very good correlation between NDVI and rainfall rate. Good correlation also exists between: NDVI and relative humidity; NDVI, sensible heat flux and relative humidity; NDVI, momentum flux and emissivity; and NDVI, sensible heat flux and emissivity. The study suggests that the momentum flux has only marginal impact on NDVI. Due to rapid urbanization,the coastal belt is characterized by reduced NDVI compared to the interior areas, suggesting that thermodynamic discontinuities considerably influence the vegetation pattern. This study is useful for the investigation of small-scale circulation models, especially in urban and suburban areas where differential heating leads to the formation of heat islands. In the long run, such studies on a global scale are vital to gain accurate, timely information on the distribution of vegetation on the earth's surface. This may lead to an understanding of how changes in land cover affect phenomena as diverse as the atmospheric CO2 concentrations, the hydrological cycle and the energy balance at the surface-atmosphere interface.


Sign in / Sign up

Export Citation Format

Share Document