scholarly journals High resolution climate reconstructions of recent warming using instrumental and ice core records from coastal Antarctica

MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 665-672
Author(s):  
MELOTH THAMBAN ◽  
SUSHANT S.NAIK ◽  
C.M. LALURAJ ◽  
R. RAVINDRA

In-situ observational record of Antarctic surface temperatures is rather sparse. Proxy based ice core studies are thus critical for reconstructing the past climate change on centennial and decadal time scales. The present study review the available instrumental and proxy records from the Dronning Maud Land region of East Antarctica as well as report recent evidences of Antarctic climate change and its global linkages. The monthly mean air temperature records of the Novolazarevskaya (Novo) station, which is the longest (since 1961) and continuous meteorological record in this region, revealed a significant warming trend at a rate of 0.25 °C / decade. To understand the spatial and temporal consistency of this warming, well-dated ice cores from the coastal Dronning Maud Land region were assessed. All proxy records consistently suggest an enhanced warming up to +0.12 °C / decade. This is further supported by a recent assessment of stable oxygen and hydrogen isotope proxy records from two high resolution ice cores (IND-25/B5 and IND-22/B4) from this region. Among these records, the IND-25/B5 provided ultra-high-resolution data for the past 100 years (1905-2005) and the IND-22/B4 core represented the past ~470 years (1530-2002) of Antarctic change. These ice records provided insights on the influence of solar forcing on Antarctic climate system as well as its linkages with the tropical and mid-latitude climatic modes like the Southern Annular Mode (SAM) and El Niño Southern Oscillation (ENSO). The calculated surface air temperatures using these records showed a warming by 0.06-0.1 °C / decade, with greatly enhanced warming during the past several decades (~0.4 °C / decade). It is confirmed that the coastal areas of Dronning Maud Land are indeed warming and the trend is apparently enhancing in the recent decades.

2006 ◽  
Vol 2 (6) ◽  
pp. 1051-1073 ◽  
Author(s):  
O. Solomina ◽  
G. Wiles ◽  
T. Shiraiwa ◽  
R. D’Arrigo

Abstract. Tree rings, ice cores and glacial geologic histories for the past several centuries offer an opportunity to characterize climate variability and to identify the key climate parameters forcing glacier expansions. A newly developed larch ring-width chronology is presented for Kamchatka that is sensitive to past summer temperature variability. This record provides the basis to compare with other proxy records of inferred temperature and precipitation change from ice core and glacier records, and to characterize climate for the region over the past 400 years. Individual low growth years in the larch record are associated with several known and proposed volcanic events that have been observed in other proxy records from the Northern Hemisphere. Comparison of the tree-rings with an ice core record of melt feature index for Kamchatka's Ushkovsky volcano confirms a 1–3 year dating accuracy for this ice core series over the late 18th to 20th centuries. Decadal variations of low summer temperatures (tree-ring record) and high annual precipitation (ice core record) are broadly consistent with intervals of positive mass balance measured and estimated at several glaciers, and with moraine building, provides a basis to interpret geologic glacier records.


2019 ◽  
Vol 19 (22) ◽  
pp. 14133-14148 ◽  
Author(s):  
Stanislav Kutuzov ◽  
Michel Legrand ◽  
Susanne Preunkert ◽  
Patrick Ginot ◽  
Vladimir Mikhalenko ◽  
...  

Abstract. Ice cores are one of the most valuable paleo-archives. Records from ice cores provide information not only about the amount of dust in the atmosphere, but also about dust sources and their changes in the past. In 2009, a 182 m long ice core was recovered from the western plateau of Mt Elbrus (5115 m a.s.l.). This record was further extended after a shallow ice core was drilled in 2013. Here we analyse Ca2+ concentrations, a commonly used proxy of dust, recorded in these Elbrus ice records over the time period of 1774–2013 CE. The Ca2+ record reveals quasi-decadal variability with a generally increasing trend. Using multiple regression analysis, we found a statistically significant spatial correlation of the Elbrus Ca2+ summer concentrations with precipitation and soil moisture content in the Levant region (specifically Syria and Iraq). The Ca2+ record also correlates with drought indices in North Africa (r=0.67, p<0.001) and Middle East regions (r=0.71, p<0.001). Dust concentrations prominently increase in the ice core over the past 200 years, confirming that the recent droughts in the Fertile Crescent (1998–2012 CE) present the most severe aridity experienced in at least the past two centuries. For the most recent 33 years recorded (1979–2012 CE), significant correlations exist between Ca2+ and Pacific circulation indices (Pacific Decadal Oscillation, Southern Oscillation Index and Niño 4), which suggests that the increased frequency of extreme El Niño and La Niña events due to a warming climate has extended their influence to the Middle East. Evidence demonstrates that the increase in Ca2+ concentration in the ice core cannot be attributed to human activities, such as coal combustion and cement production.


2004 ◽  
Vol 39 ◽  
pp. 339-345 ◽  
Author(s):  
Marzena Kaczmarska ◽  
Elisabeth Isaksson ◽  
Lars Karlöf ◽  
Jan-Gunnar Winther ◽  
Jack Kohler ◽  
...  

AbstractA 100 m long ice core was retrieved from the coastal area of Dronning Maud Land (DML), Antarctica, in the 2000/01 austral summer. The core was dated to AD 1737 by identification of volcanic horizons in dielectrical profiling and electrical conductivity measurement records in combination with seasonal layer counting from high-resolution oxygen isotope (δ18O) data. A mean long-term accumulation rate of 0.29 ma–1w.e. was derived from the high-resolution δ18O record as well as accumulation rates during periods in between the identified volcanic horizons. A statistically significant decrease in accumulation was found from about 1920 to the present. A comparison with other coastal ice cores from DML suggests that this is a regional pattern.


2017 ◽  
Vol 8 (4) ◽  
pp. 1171-1190 ◽  
Author(s):  
Niklas Boers ◽  
Mickael D. Chekroun ◽  
Honghu Liu ◽  
Dmitri Kondrashov ◽  
Denis-Didier Rousseau ◽  
...  

Abstract. Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic–dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP), and we focus on the time interval 59–22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard–Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data, (ii) cubic drift terms, (iii) nonlinear coupling terms between the δ18O and dust time series, and (iv) non-Markovian contributions that represent short-term memory effects.


2007 ◽  
Vol 3 (2) ◽  
pp. 325-330 ◽  
Author(s):  
T. Blunier ◽  
R. Spahni ◽  
J.-M. Barnola ◽  
J. Chappellaz ◽  
L. Loulergue ◽  
...  

Abstract. To interpret new high resolution climate records it becomes more and more important to know about the succession of climate events. Such knowledge is hard to get especially when dealing with different types of climate archives. Even for ice cores a direct synchronization between ice cores from Greenland and Antarctica has not been possible so far due to the lack of time markers occurring in both hemispheres. Fortunately, variations in the time series of global gas records can be used as indirect time markers. Here we discuss in detail the steps that are necessary to synchronize ice cores via global gas records exemplified on the synchronization of the EPICA ice core from Dronning Maud Land to a Greenland record from North GRIP.


2019 ◽  
Author(s):  
Lara Klippel ◽  
Scott St. George ◽  
Ulf Büntgen ◽  
Paul J. Krusic ◽  
Jan Esper

Abstract. The 692 proxy records of the new PAGES 2k compilation offer an unprecedented opportunity to study regional to global temperature trends associated with orbitally-driven changes in solar irradiance over the past two millennia. Here, we analyse the significance of long-term trends from 1–1800 CE in the PAGES 2k compilation’s tree-ring, ice core, marine and lake sediment records and find, unlike ice-cores, glacier dynamics, marine and lake sediments, no suggestion of a pre-industrial cooling trend in the tree-ring records. To understand why the tree-ring proxies lack a significant pre-industrial cooling, we divide the dendro data by location (high NH latitudes vs. mid latitudes), seasonal response (annual vs. summer), detrending method, and temperature sensitivity (high vs. low). We conclude the ability to detect any pre-industrial, millennial-long cooling in the tree-ring proxies does not increase with latitude, seasonal sensitivity, or detrending method. Consequently, caution is advised when using multi-proxy approaches to reconstruct long-term temperature changes.


2017 ◽  
Author(s):  
Niklas Boers ◽  
Mickael D. Chekroun ◽  
Honghu Liu ◽  
Dmitri Kondrashov ◽  
Denis-Didier Rousseau ◽  
...  

Abstract. Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic-dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP) and we focus on the time interval 59 ka–22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard–Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data; (ii) cubic drift terms; (iii) nonlinear coupling terms between the δ18O and dust time series; and (iv) non-Markovian contributions that represent short-term memory effects.


2007 ◽  
Vol 3 (1) ◽  
pp. 365-381 ◽  
Author(s):  
T. Blunier ◽  
R. Spahni ◽  
J.-M. Barnola ◽  
J. Chappellaz ◽  
L. Loulergue ◽  
...  

Abstract. To interpret new high resolution climate records it becomes more and more important to know about the succession of climate events. Such knowledge is hard to get especially when dealing with different types of climate archives. Even for ice cores a direct synchronization between ice cores from Greenland and Antarctica has not been possible so far due to the lack of time markers occurring in both hemispheres. Fortunately, variations in the time series of global gas records can be used as indirect time markers. Here we discuss in detail the steps that are necessary to synchronize ice cores via global gas records exemplified on the synchronization of the EPICA ice core from Dronning Maud Land to a Greenland record from North GRIP.


2021 ◽  
Vol 7 (22) ◽  
pp. eabc1379
Author(s):  
Pengfei Liu ◽  
Jed O. Kaplan ◽  
Loretta J. Mickley ◽  
Yang Li ◽  
Nathan J. Chellman ◽  
...  

Fire plays a pivotal role in shaping terrestrial ecosystems and the chemical composition of the atmosphere and thus influences Earth’s climate. The trend and magnitude of fire activity over the past few centuries are controversial, which hinders understanding of preindustrial to present-day aerosol radiative forcing. Here, we present evidence from records of 14 Antarctic ice cores and 1 central Andean ice core, suggesting that historical fire activity in the Southern Hemisphere (SH) exceeded present-day levels. To understand this observation, we use a global fire model to show that overall SH fire emissions could have declined by 30% over the 20th century, possibly because of the rapid expansion of land use for agriculture and animal production in middle to high latitudes. Radiative forcing calculations suggest that the decreasing trend in SH fire emissions over the past century largely compensates for the cooling effect of increasing aerosols from fossil fuel and biofuel sources.


Sign in / Sign up

Export Citation Format

Share Document