scholarly journals Organic carbon mineralization of the biochar and organic compost of poultry litter in an Argisol

2021 ◽  
Vol 42 (6) ◽  
pp. 3167-3184
Author(s):  
Gilvanise Alves Tito ◽  
◽  
Josely Dantas Fernandes ◽  
Lucia Helena Garófalo Chaves ◽  
Hugo Orlando Carvallo Guerra ◽  
...  

The dynamics of the organic residues added to the soil are closely related to its mineralization rate. Therefore, the present study aimed to evaluate the organic carbon mineralization in soil samples incubated with different doses of biochar and organic compost from poultry litter. Carbon mineralization was evaluated experimentally by measuring the C-CO2 liberated by incubating 200 g of soil mixed with different doses 0, 5, 10, 15, and 20 t ha-1 of both biochar and organic compost for 61 days. The soil microbial activity, and consequently the carbon mineralization, increased with the application of doses of biochar and organic compost from the poultry litter. The highest C-CO2 mineralization was observed in the treatments that received organic compost. The carbon mineralization process followed chemical kinetics with two simultaneous reactions. The greatest amount of released and accumulated C-CO2 was observed in the soil incubated with 15 and 20 t ha-1 of organic compost from the poultry litter. The doses of biochar did not influence the content of mineralized carbon; this behavior was not verified with the use of this compost, whose highest content corresponded to 85.69 mg kg-1, applying 20 t ha-1.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7707 ◽  
Author(s):  
Zhen Guo ◽  
Jichang Han ◽  
Yan Xu ◽  
Yangjie Lu ◽  
Chendi Shi ◽  
...  

The organic carbon mineralization process reflects the release intensity of soil CO2. Therefore, the study of organic carbon mineralization and particle composition analysis of soft rock and sand compound soil can provide technical support and a theoretical basis for soil organic reconstruction (soil structure, materials and biological nutrition). Based on previous research, four treatments were selected: CK (soft rock:sand=0:1), C1 (soft rock:sand=1:5), C2 (soft rock:sand=1:2) and C3 (soft rock:sand=1:1), respectively. Specifically, we analyzed the organic carbon mineralization process and soil particle composition by lye absorption, laser granulometer, and scanning electron microscope. The results showed that there was no significant difference in organic carbon content between C1, C2 , and C3 treatments, but they were significantly higher than in the CK treatment (P < 0.05). The organic carbon mineralization rate in each treatment accords with a logarithmic function throughout the incubation period (P < 0.01), which can be divided into a rapid decline phase in days 1 to 11 followed by a steady decline phase in days 11 to 30. The cumulative mineralization on the 11th day reached 54.96%–74.44% of the total mineralization amount. At the end of the incubation, the cumulative mineralization and potential mineralizable organic carbon content of the C1, C2 and C3 treatments were significantly higher than those of the CK treatment. The cumulative mineralization rate was also the lowest in the C1 and C2 treatment. The turnover rate constant of soil organic carbon in each treatment was significantly lower than that of the CK treatment, and the residence time increased. With the increase of volume fraction of soft rock, the content of silt and clay particles increased gradually, the texture of soil changed from sandy soil to sandy loam, loam , and silty loam, respectively. With the increase of small particles, the structure of soil appear ed to collapse when the volume ratio of soft rock was 50%. A comprehensive mineralization index and scanning electron microscopy analysis, when the ratio of soft rock to sand volume was 1:5–1:2, this can effectively increase the accumulation of soil organic carbon. Then, the distribution of soil particles was more uniform, the soil structure was stable (not collapsed), and the mineralization level of unit organic carbon was lower. Our research results have practical significance for the large area popularization of soft rock and sand compound technology.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11572
Author(s):  
Wanying Li ◽  
Zhen Guo ◽  
Juan Li ◽  
Jichang Han

The addition of soft rock to aeolian sandy soil can improve the level of fertility and ability of the soil to sequester carbon, which is of substantial significance to improve the ecological environment of the Mu Us sandy land and supplement newly added cultivated land. S oft rock and sand were combined using the ratio (v/v) of 0:1 (CK), 1:5 (S1), 1:2 (S2), and 1:1 (S3). The process of mineralization of organic carbon at different depths (0–10 cm, 10–20 cm, and 20–30 cm) in the combined soil was studied by 58 days of incubation indoors at a constant temperature. The content of soil nutrient s increased significantly under the S2 and S3 treatments and was higher in the 0–10 cm soil depth. The mineralization of rate of soil organic carbon (SOC) of different combination ratios can be divided into three time periods: the stress mineralization stage (1–7 d), the rapid mineralization stage (7–9 d) and the slow mineralization stage (9–58 d). At the end of incubation, the rates of mineralization of SOC and accumulated mineralization amount (Ct) were relatively large in the 0–10 cm soil depth, followed by the 10–20 cm and 20–30 cm soil layers , indicating that the stability of SOC in the surface layer was poor, which is not conducive to the storage of carbon. The content of potentially mineralizable organic carbon (C0) in the soil was consistent with the trend of change of Ct. Compared with the CK treatment, the cumulative organic carbon mineralization rate (Cr) of the S2 and S3 treatment s decreased by 7.77% and 6.05%, respectively; and the C0/SOC decreased by 22.84% and 15.55%, respectively. Moreover, the Cr and C0/SOC values in the 10–20 cm soil depth were small, which indirectly promoted the storage of organic carbon. With the process of SOC mineralization, the contents of soil microbial biomass carbon (SMBC) and dissolved organic carbon (DOC) tended to decrease compared with the initial contents, with larger amplitudes in the 20–30 cm and 10–20 cm soil depth s, respectively. SOC, total nitrogen, available potassium, SMBC and DOC were all closely related to the process of mineralization of organic carbon. Therefore, the accumulation of soil carbon could be enhanced when the proportion of soft rock and sand composite soil was between 1:2 and 1:1, and the 10–20 cm soil depth was relatively stable. These results provide a theoretical basis for the improvement of desertified land.


2019 ◽  
Author(s):  
Zhen Guo ◽  
Jichang Han ◽  
Yan Xu ◽  
Chang Tian ◽  
Chendi Shi ◽  
...  

AbstractThe organic carbon mineralization process can reflect the release intensity of soil CO2. Therefore, the study of organic carbon mineralization and particle composition analysis of soft rock and sand compound soil can provide technical support and theoretical basis for the theory of soil organic reconstruction. Based on the previous research, this paper mainly selected four typical treatments of 0:1 (CK), 1:5 (C1), 1:2 (C2) and 1:1 (C3), respectively, and analyzed the soil organic carbon mineralization process and particle composition by lye absorption method, laser particle size meter and scanning electron microscope. The results showed that there was no significant difference in organic carbon content between C1, C2 and C3 treatments, but they were significantly higher than CK treatment (P < 0.05). The organic carbon mineralization rate of each treatment accords with a logarithmic function throughout the culture period (P < 0.01), which can be divided into a rapid decline phase of 1-11 days and a steady decline phase of 11-30 days. The cumulative mineralization amount on the 11th day reached 54.96%-74.44% of the total mineralization amount. At the end of the culture, the cumulative mineralization and potential mineralizable organic carbon content of C1 and C2 treatments were significantly higher than those of CK treatment, and the cumulative mineralization rate was also the lowest with C1 and C2 treatment. The turnover rate constant of soil organic carbon in each treatment was significantly lower than that of CK treatment, and the residence time increased. With the increase of volume fraction of soft rock, the content of silt and clay particles increases gradually, the texture of soil changes from sandy soil to sandy loam, loam and silty loam, and because of the increase of small particles, the structure of soil appears to collapse when the volume ratio of soft rock was 50%. In summary, the ratio of soft rock to sand volume was 1:5-1: 2, which can effectively increased the accumulation of soil organic carbon. At this time, the distribution of soil particles was more uniform, the soil structure was stable, and the mineralization level of unit organic carbon was lower. The research results have practical significance for the large area popularization of soft rock and sand compound technology.


2015 ◽  
Vol 7 (2) ◽  
pp. 1021-1028
Author(s):  
Jatinder Kaur ◽  
Sandeep Sharma ◽  
Hargopal Singh

Changes in soil microbial activities were investigated to examine the effect of aerobically digested sewage sludge (SS) and compared with compost under incubation conditions over 63 days. Sandy soil was amended with 0.25, 0.5, 1.0 and 1.5 % w/w of compost and sewage sludge. Enzyme activity (dehydrogenase, alkaline phosphatase, acid phosphatase, phytase and urease) were examined at an interval of 3, 7, 14, 21, 28, 42 and 63 days. At the end of the experiment the change in organic carbon, nitrogen, potassium and phosphorus was also recorded.Results indicated that enzyme activities were substantially enhanced in presence of both amendments for first few days and the higher increases were measured at 1.5% of compost and sewage sludge amendment. Then an overall decrease in enzyme activity was recorded. Both the amendments also significantly increased the organic carbon, nitrogen and potassium of the soil while increase in available phosphorus was only recorded in treatment receiving compost. The present experiment indicated that addition of compost and sewage sludge have positive effect on soil microbial activity and can be safely used as soil amendment without having any adverse effect. Though, a previous examination of sewage sludge to be used must be made for heavy metals and pathogens.


Sign in / Sign up

Export Citation Format

Share Document