scholarly journals Identification of predominant bacteria and controlling of microbial population in vase solution of cut orchid flowers

2022 ◽  
pp. 1
Author(s):  
Parviz Almasi ◽  
Mahmud Mohamed
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kundi Yang ◽  
Mengyang Xu ◽  
Jingyi Cao ◽  
Qi Zhu ◽  
Monica Rahman ◽  
...  

AbstractEmerging evidence has highlighted the connection between exposure to air pollution and the increased risk of obesity, metabolic syndrome, and comorbidities. Given the recent interest in studying the effects of ultrafine particle (UFP) on the health of obese individuals, this study examined the effects of gastrointestinal UFP exposure on gut microbial composition and metabolic function using an in vivo murine model of obesity in both sexes. UFPs generated from light-duty diesel engine combustion of petrodiesel (B0) and a petrodiesel/biodiesel fuel blend (80:20 v/v, B20) were administered orally. Multi-omics approaches, including liquid chromatography–mass spectrometry (LC–MS) based targeted metabolomics and 16S rRNA gene sequence analysis, semi-quantitatively compared the effects of 10-day UFP exposures on obese C57B6 mouse gut microbial population, changes in diversity and community function compared to a phosphate buffer solution (PBS) control group. Our results show that sex-specific differences in the gut microbial population in response to UFP exposure can be observed, as UFPs appear to have a differential impact on several bacterial families in males and females. Meanwhile, the alteration of seventy-five metabolites from the gut microbial metabolome varied significantly (ANOVA p < 0.05) across the PBS control, B0, and B20 groups. Multivariate analyses revealed that the fuel-type specific disruption to the microbial metabolome was observed in both sexes, with stronger disruptive effects found in females in comparison to male obese mice. Metabolic signatures of bacterial cellular oxidative stress, such as the decreased concentration of nucleotides and lipids and increased concentrations of carbohydrate, energy, and vitamin metabolites were detected. Furthermore, blood metabolites from the obese mice were differentially affected by the fuel types used to generate the UFPs (B0 vs. B20).


2021 ◽  
pp. 1-19
Author(s):  
Vojtech Kouba ◽  
Juan Camilo Gerlein ◽  
Andrea Benakova ◽  
Marco Antonio Lopez Marin ◽  
Eva Rysava ◽  
...  

Author(s):  
Hussain Aqeel ◽  
Mahendran Basuvaraj ◽  
Steven N. Liss

BNR granules rich in amyloid adhesins and denitrifying bacteria were formed in the SBRs that were operated with extended anoxic conditions.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 665
Author(s):  
Michal Sposob ◽  
Hee-Sung Moon ◽  
Dongjin Lee ◽  
Yeo-Myeong Yun

In this study, the microbiomes linked with the operational parameters in seven mesophilic full-scale AD plants mainly treating food waste (four plants) and sewage sludge (three plants) were analyzed. The results obtained indicated lower diversity and evenness of the microbial population in sludge digestion (SD) plants compared to food digestion (FD) plants. Candidatus Accumulibacter dominated (up to 42.1%) in SD plants due to microbial immigration from fed secondary sludge (up to 89%). Its potential activity in SD plants was correlated to H2 production, which was related to the dominance of hydrogenotrophic methanogens (Methanococcus). In FD plants, a balance between the hydrogenotrophic and methylotrophic pathways was found, while Flavobacterium and Levilinea played an important role during acidogenesis. Levilinea also expressed sensitivity to ammonia in FD plants. The substantial differences in hydraulic retention time (HRT), organic loading rate (OLR), and total ammonium nitrogen (TAN) among the studied FD plants did not influence the archaeal methane production pathway. In addition, the bacterial genera responsible for acetate production through syntrophy and homoacetogenesis (Smithella, Treponema) were present in all the plants studied.


Foods ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 544 ◽  
Author(s):  
Łukasz Łopusiewicz ◽  
Emilia Drozłowska ◽  
Paulina Siedlecka ◽  
Monika Mężyńska ◽  
Artur Bartkowiak ◽  
...  

Flaxseed oil cake (FOC) was evaluated as a potential substrate for the production of a novel kefir-like fermented beverage. Three variants containing 5%, 10%, and 15% (w/w) of FOC were inoculated with kefir grains and incubated at 25 °C for 24 h. After processing, beverages were stored in refrigerated conditions (6 °C) for 21 days. Changes in microbial population, pH, acidity, levels of proteins, polyphenolics, flavonoids, ascorbic acid, and reducing sugars were estimated. Additionally, viscosity, firmness, color, and antioxidant properties were determined. Results showed that lactic acid bacteria as well as yeast were capable of growing well in the FOC without any supplementation. During refrigerated storage, the viability of the microorganisms were over the recommended minimum level for kefir products. As a result of fermentation, the beverages showed excellent antioxidant activity. Because of the functional characteristics conferred to the FOC beverages, the use of kefir grains showed adequate potential for the industrial application. Therefore, this beverages could be used as a new, non-dairy vehicle for beneficial microflora consumption, especially by vegans and lactose-intolerant consumers.


2006 ◽  
Vol 54 (19) ◽  
pp. 7391-7398 ◽  
Author(s):  
Cristina Martínez-Villaluenga ◽  
Piotr Gulewicz ◽  
Antonio Pérez ◽  
Juana Frías ◽  
Concepción Vidal-Valverde

Sign in / Sign up

Export Citation Format

Share Document