scholarly journals ASSESSING DROUGHT CHARACTERISTICS OF MELAKA BASIN USING JOINT METEOROLOGICAL AND STREAMFLOW INDICES

2020 ◽  
Vol 80 (1) ◽  
Author(s):  
Kee An Hong ◽  
Jer Lang Hong ◽  
Izihan Ibrahim

In this study, drought occurrence in the Melaka basin has been assessed using the meteorological and hydrological drought indices. A continuous rainfall and streamflow data of 40 years were used for drought analysis. Results show that in terms of meteorological drought index, the severe drought occurred in 1986-1988. The streamflow drought index indicates that the extreme drought occurred in 1982-1984. Further analysis based on seasonal precipitation and streamflow data shows that there is no drought for 79% of the time for the period 1960-2000 where there are hydrological records. For most of the dry and wet seasons, it is more likely that the frequency of occurrence of hydrological droughts only is higher than the frequency of occurrence of meteorological and hydrological droughts simultaneously or only meteorological droughts.

2020 ◽  
Vol 19 (2) ◽  
pp. 18-27
Author(s):  
Worapong Lohpaisankrit ◽  
◽  
Jessada Techamahasaranont ◽  

Predicting drought occurrence accurately still remains a challenging task. To fill research gaps, this study identified and analysed meteorological and hydrological droughts using the Standardized Precipitation Index (SPI) and Streamflow Drought Index (SDI), respectively, in the upper Lam Pao watershed in Thailand. The study also focused on investigating the relationships between both droughts. The SPI and SDI were computed based on observed long-term precipitation and streamflow data during the period of 1988-2017. The drought analysis was carried out by using the R packages. The location, period and severity level of drought events were graphically presented. On the basis of trend analysis, the SPI series showed slightly increasing trends, whereas no trend was found for the SDI series. This implied that the hydrological drought was influenced by not only precipitation but also other factors. The key findings indicated that there was a positive relationship between meteorological and hydrological droughts. In addition, there was a specific lag time, which may depend on physical characteristics of a basin, in drought propagating from meteorological drought to hydrological drought. Overall, the drought indices can help to predict hydrological drought events, which could be valuable information for drought monitoring and early warning systems.


Author(s):  
Lin Wang ◽  
Jianyun Zhang ◽  
Amgad Elmahdi ◽  
Zhangkang Shu ◽  
Yinghui Wu ◽  
...  

Abstract In the context of global warming and increasing human activities, the acceleration of the water cycle will increase the risk of basin drought. In this study, to analyze the spatial and temporal evolution characteristics of hydrological and meteorological droughts over the Hanjiang River Basin (HRB); the Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI) were selected and applied for the period 1961–2018. In addition, the cross-wavelet method was used to discuss the relationship between hydrological drought and meteorological droughts. The results and analysis indicated that: (1) the meteorological drought in the HRB showed a complex cyclical change trend of flood-drought-flood from 1961 to 2018. The basin drought began to intensify from 1990s and eased in 2010s. The characteristics of drought evolution in various regions are different based on scale. (2) During the past 58 years, the hydrological drought in the HRB has shown a significant trend of intensification, particularly in autumn season. Also, the hydrological droughts had occurred frequently since the 1990s, and there were also regional differences in the evolution characteristics of drought in various regions. (3) Reservoir operation reduces the frequency of extreme hydrological drought events. The effect of reducing the duration and intensity of hydrological drought events by releasing water from the reservoir is most obvious at Huangjiagang Station, which is the nearest to Danjiangkou Reservoir. (4) The hydrological drought and meteorological drought in the HRB have the strongest correlation on the yearly scale. After 1990, severe human activities and climate change are not only reduced the correlation between hydrological drought and meteorological drought in the middle and lower reaches of the basin, but also reduced the lag time between them. Among them, the hydrological drought in the upper reaches of the basin lags behind the meteorological drought by 1 month, and the hydrological drought in the middle and lower reaches of the basin has changed from 2 months before 1990 to 1 month lagging after 1990.


2021 ◽  
Vol 13 (4) ◽  
pp. 2066
Author(s):  
Jin Hyuck Kim ◽  
Jang Hyun Sung ◽  
Eun-Sung Chung ◽  
Sang Ug Kim ◽  
Minwoo Son ◽  
...  

Due to the recent appearance of shares socioeconomic pathway (SSP) scenarios, there have been many studies that compare the results between Coupled Model Intercomparison Project (CMIP)5 and CMIP6 general circulation models (GCMs). This study attempted to project future drought characteristics in the Cheongmicheon watershed using SSP2-4.5 of Australian Community Climate and Earth System Simulator-coupled model (ACCESS-CM2) in addition to Representative Concentration Pathway (RCP) 4.5 of ACCESS 1-3 of the same institute. The historical precipitation and temperature data of ACCESS-CM2 were generated better than those of ACCESS 1-3. Two meteorological drought indices, namely, Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) were used to project meteorological drought while a hydrological drought index, Standardized Streamflow Index (SDI), was used to project the hydrological drought characteristics. The metrological data of GCMs were bias-corrected using quantile mapping method and the streamflow was obtained using Soil and Water Assessment Tool (SWAT) and bias-corrected meteorological data. As a result, there were large differences of drought occurrences and severities between RCP4.5 and SSP2-4.5 for the values of SPI, SPEI, and SDI. The differences in the minimum values of drought index between near (2021–2060) and far futures (2061–2100) were very small in SSP2-4.5, while those in RCP4.5 were very large. In addition, the longest drought period from SDI was the largest because the variation in precipitation usually affects the streamflow with a lag. Therefore, it was concluded that it is important to consider both CMIP5 and CMIP6 GCMs in establishing the drought countermeasures for the future period.


2020 ◽  
pp. 517-531

This study aims to indicate the relationship between meteorological drought and hydrological drought on the example of a lakeland catchment in north-western Poland. The Standardised Precipitation Index (SPI) and Standardised Runoff Index (SRI) were used to identify drought during 1-, 3-, 6-, 9- and 12-month cumulation periods. In the study period 1971–2015, 13 to 62 meteorological droughts and 6 to 21 hydrological droughts were identified. The highest number of droughts occurred for the shortest cumulation period (1 month) and the lowest number for the longest cumulation period (12 months). The relationship between SPI and SRI coefficients over the annual course was strongest for the 9-month cumulation period. The highest correlation coefficient was obtained for February.


Hydrology ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 49 ◽  
Author(s):  
Doan Quang Tri ◽  
Tran Tho Dat ◽  
Dinh Duc Truong

The objective of this study was to establish drought classification maps to simulate and calculate the lack of discharge in the Ba River basin in Vietnam. The maps were established using three meteorological drought indices (the Standardized Precipitation Index (SPI), the Drought Index (J), and the Ped Index (Ped)), the Soil and Water Assessment Tool (SWAT) model, and the hydrological drought index (KDrought). The results from the calculation of the SPI, Aridity Index (AI), and Ped at three stations (An Khe, Ayunpa, and MDrak) showed that the J index was suitable for the study area. Based on the J index, an extreme drought was predicted to occur at the Ayunpa, An Khe, and MDrak stations. During the calibration process, the SWAT Calibration Uncertainties Program (SWAT-CUP) model, with automatic algorithms, was used to select the parameters to optimize the SWAT model. For the calibration and validation, the observed discharge at two hydrology stations, An Khe and Cung Son, from the periods 1981–1991 and 1992–2002, respectively, were used. The simulated discharge was found to be acceptable, with the Nash–Sutcliffe efficiency (NSE), Percent bias (PBIAS), and R2 reaching good levels in both calibration and validation. The results from the calculation of the drought index (KDrought), and the established drought classification maps in 2016, showed that the most affected areas were the communes of the Gia Lai and Dak Lak provinces. The results from the simulation and calculations were found to be consistent with the situation that occurred in practice. The application of meteorological and hydrological drought indices, as well as the hydrological model, to support impact assessments of drought classification in space and time, as well as the establishment of forecasting and warning maps, will help managers to effectively plan policy responses to drought.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 657
Author(s):  
Arzu Ozkaya ◽  
Yeliz Zerberg

Drought is a natural disaster that occurs globally when water availability is significantly below normal levels. Drought assessment is important for water resource planning, and therefore indexes can be used to characterize drought magnitudes. Using the monthly streamflow data at 47 stations from 1972 to 2011, the streamflow drought index (SDI) series with 3- (SDI-3), 6- (SDI-6), and 12-month (SDI-12) time scales were calculated, and the hydrological drought of the upper Tigris Basin in Turkey has been assessed. The results showed that almost all stations experienced at least one severe drought during the study period. The results revealed that since the early 1990s the study area has become drier. Using the data for a 12-month period and the area of the sub-basins for each flow monitoring station, area-weighted SDI-12 (WSDI) values were constructed. According to the WSDI results, the intensity and number of drought conditions increased during every 10-year period. This outcome has been verified using the maps of averaged SDI-12 values over the Tigris Basin. We noticed from observations of the maps that the time domain zones in lower latitudes experienced drought earlier as compared with zones in higher latitudes.


2021 ◽  
Author(s):  
Emilio Romero-Jiménez ◽  
Matilde García-Valdecasas Ojeda ◽  
Patricio Yeste ◽  
Juan José Rosa-Cánovas ◽  
Sonia Raquel Gámiz-Fortis ◽  
...  

<p>Society is facing a challenge due to climate change. Particularly, there are several areas where droughts will impact economic activities and landscapes, and decisions must be made in order to alleviate these effects. River flow regulation plays a major role in this regard, since it reduces the existing correlation between meteorological and hydrological droughts.<br>The aim of this work is to investigate the response of hydrological drought to meteorological drought under the influence of reservoir. To this effect, the Guadalquivir River Basin, in the southern Iberian Peninsula, has been studied. The aridity of this basin is expected to increase in the future, with longer and more severe meteorological droughts. Moreover, the Guadalquivir presents a strong regulation along its course. Therefore, streamflow and precipitation data have been analysed. With these data, meteorological and hydrological drought indices, such as the Standardized Precipitation Index (SPI), the Standardized Precipitation-Evapotranspiration Index (SPEI), and the Standardized Streamflow Index (SSI), have been calculated, focusing on how they correlate based on time scale and spatial distribution. The meteorological drought indices have been calculated in varying time scales, showing that the hydrological response is different depending on characteristics such as orography and river section. The correlation between the indices is generally strong in the study area, but the results show that its importance decreases as the streamflow becomes more regulated.<br>The results of this study could be added to the current tools for decision making in the economic fields that are most affected by droughts. Since droughts are a major effect of climate change in the area, this study could also act as a first step for the study of future droughts through climate and hydrological models.<br>Keywords: Drought indices, river regulation, hydrological response.<br>ACKNOWLEDGEMENTS: This work was funded by the FEDER / Junta de Andalucía - Ministry of Economy and Knowledge / Project [B-RNM-336-UGR18], and by the Spanish Ministry of Economy, Industry and Competitiveness, with additional support from the European Community Funds (FEDER) [CGL2017-89836-R].</p>


2019 ◽  
Vol 50 (5) ◽  
pp. 1230-1250 ◽  
Author(s):  
Majid Dehghani ◽  
Bahram Saghafian ◽  
Mansoor Zargar

Abstract Hydrological drought forecasting is considered a key component in water resources risk management. As sustained meteorological drought may lead to hydrological drought over time, it is conceptually feasible to capitalize on the dependency between the meteorological and hydrological droughts while trying to forecast the latter. As such, copula functions are powerful tools to study the propagation of meteorological droughts into hydrological droughts. In this research, monthly precipitation and discharge time series were used to determine Standardized Precipitation Index (SPI) and Standardized Hydrological Drought Index (SHDI) at different time scales which quantify the state of meteorological and hydrological droughts, respectively. Five Archimedean copula functions were adopted to model the dependence structure between meteorological/hydrological drought indices. The Clayton copula was identified for further investigation based on the p-value. Next, the conditional probability and the matrix of forecasted class transitions were calculated. Results indicated that the next month's SHDI class forecasting is promising with less than 10% error. Moreover, extreme and severe meteorological drought classes lead to hydrological drought condition with a more than 70% probability. Other classes of meteorological drought/wet conditions lead to normal hydrological (drought) condition with less than 50% probability and to wet hydrological condition with over 20% probability.


2021 ◽  
Author(s):  
Lin Wang ◽  
Jianyun Zhang ◽  
Amgad Elmahdi ◽  
Zhangkang Shu ◽  
Zhenxin Bao ◽  
...  

Abstract In the context of global warming and increasing human activities, the acceleration of the water cycle will increase the risk of basin drought. In this study, to analyze the spatial and temporal evolution characteristics of hydrological and meteorological droughts over the Hanjiang River Basin (HRB); the Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI) were selected and applied for the period 1961–2018. In addition, the cross-wavelet method was used to discuss the relationship between hydrological drought and meteorological droughts. The results and analysis indicated that: (1) the meteorological drought in the HRB showed a complex cyclical change trend of flood-drought-flood from 1961 to 2018. The basin drought began to intensify from 1990s and eased in 2010s. The characteristics of drought evolution in various regions are different based on scale. (2) During the past 58 years, the hydrological drought in the HRB has shown a significant trend of intensification, particularly in autumn season. Also, the hydrological droughts had occurred frequently since the 1990s, and there were also regional differences in the evolution characteristics of drought in various regions. (3) Reservoir operation reduces the frequency of extreme hydrological drought events. The effect of reducing the duration and intensity of hydrological drought events by releasing water from the reservoir is most obvious at Huangjiagang Station, which is the nearest to Danjiangkou Reservoir. (4) The hydrological drought and meteorological drought in the HRB have the strongest correlation on the yearly scale. After 1990, severe human activities and climate change are not only reduced the correlation between hydrological drought and meteorological drought in the middle and lower reaches of the basin, but also reduced the lag time between them. Among them, the hydrological drought in the upper reaches of the basin lags behind the meteorological drought by 1 month, and the hydrological drought in the middle and lower reaches of the basin has changed from 2 months before 1990 to 1 month lagging after 1990.


2020 ◽  
Vol 2 (1) ◽  
pp. 71-83 ◽  
Author(s):  
Safieh Javadinejad ◽  
◽  
Rebwar Dara ◽  
Forough Jafary ◽  
◽  
...  

The effect of meteorological and hydrological droughts is very important in arid and semi-arid regions. Analyzing these effects on groundwater supplies plays an important role for water management in those regions. This paper aims to characterize droughts in the Isfahan-Borkhar basin, an arid area of Iran. The observed hydro-climatic data (for the period of 1971-2005) were used for hydro-meteorological projections (for the period of 2006-2040). Meteorological and surface hydrological drought evaluated by Standardized Precipitation Index (SPI), Standardized Runoff Index (SRI), and the effect of hydro-meteorological droughts on groundwater was investigated by Groundwater Resources Index (GRI). Results showed that dry and wet conditions would occur in the region in the initial and subsequent decades, based on the three indices. There was a significant association between SPI, SRI, and GRI at the time scale of 12 months. The SPI estimated using only meteorological variables alone and it is useful for estimating meteorological drought forecasts. However, SRI and GRI can represent hydrological drought that computed using catchment discharge, soil moisture and groundwater level. Results showed a considerable alteration in time of drought outlines across the area and association between the variables of predicted precipitation, temperature and the kind of indices. The projection of all three drought indices indicated drier conditions in the future period (2006-2042). The results provide reasonable management strategy for management of water resources in arid coastal plains.


Sign in / Sign up

Export Citation Format

Share Document