scholarly journals Performance of reinforced concrete buildings in the 2016 Kumamoto earthquakes and seismic design in Japan

Author(s):  
Mehdi Sarrafzadeh ◽  
Ken J. Elwood ◽  
Rajesh P. Dhakal ◽  
Helen Ferner ◽  
Didier Pettinga ◽  
...  

This report outlines the observations of an NZSEE team of practitioners and researchers who travelled to the Kumamoto Prefecture of Japan on a reconnaissance visit following the April 2016 earthquakes. The observations presented in this report are focussed on the performance of reinforced concrete (RC) buildings throughout Kumamoto Prefecture. It was found overall that modern RC buildings performed well, with patterns of damage which highlighted a philosophy of designing stiffer buildings with less of an emphasis on ductile behaviour. To explore this important difference in design practice, the Japanese Building Standard Law (BSL) is summarised and compared with standard New Zealand seismic design practices and evaluation methods.

Author(s):  
G. Michele Calvi ◽  
Daniel P. Abrams ◽  
Hugo Bachmann ◽  
Shaoliang Bai ◽  
Patricio Bonelli ◽  
...  

Author(s):  
Herian Leyva ◽  
Juan Bojórquez ◽  
Edén Bojórquez ◽  
Alfredo Reyes-Salazar ◽  
Julián Carrillo ◽  
...  

Author(s):  
A. Momtahan ◽  
R.P. Dhakal ◽  
A. Rieder

Modern seismic design codes, which are based on capacity design concepts, allow formation of plastic hinges in specified locations of a structure. This requires reliable estimation of strength of different components so that the desired hierarchy of strength of the structural components can be ensured to guarantee the formation of plastic hinges in the ductile elements. As strength of longitudinal reinforcing bars governs the strength of reinforced concrete members, strain-ageing, which has significant effect on the strength of reinforcing bars, should be given due consideration in capacity design. Strain-ageing can increase the yield strength of reinforcing steel bars and hence the strength of previously formed plastic hinges, thereby likely to force an unfavourable mechanism (such as strong beam-weak column leading to column hinging) to take place in subsequent earthquakes. In this paper, the strain-ageing effect of commonly used New Zealand reinforcing steel bars is experimentally investigated. Common New Zealand steel reinforcing bars are tested for different levels of pre-strain and different time intervals up to 50 days, and the results are discussed focussing on the extent of strain-ageing and its possible implications on seismic design provisions. The results indicate that designers need to use a higher flexural strength (in addition to overstrength) for the weaker member in checking the strength hierarchy in capacity design of reinforced concrete frames. Similarly, in designing retrofit measures to restore a damaged reinforced concrete member engineers need to take into account an increase of yield strength of the reinforcing steel bars employed in the member due to the strain-ageing phenomenon and the extent of increase in the yield strength depends on the level of damage.


2013 ◽  
Vol 13 (7) ◽  
pp. 1903-1912 ◽  
Author(s):  
R. Ditommaso ◽  
M. Vona ◽  
M. R. Gallipoli ◽  
M. Mucciarelli

Abstract. The aim of this paper is an empirical estimation of the fundamental period of reinforced concrete buildings and its variation due to structural and non-structural damage. The 2009 L'Aquila earthquake has highlighted the mismatch between experimental data and code provisions value not only for undamaged buildings but also for the damaged ones. The 6 April 2009 L'Aquila earthquake provided the first opportunity in Italy to estimate the fundamental period of reinforced concrete (RC) buildings after a strong seismic sequence. A total of 68 buildings with different characteristics, such as age, height and damage level, have been investigated by performing ambient vibration measurements that provided their fundamental translational period. Four different damage levels were considered according with the definitions by EMS 98 (European Macroseismic Scale), trying to regroup the estimated fundamental periods versus building heights according to damage. The fundamental period of RC buildings estimated for low damage level is equal to the previous relationship obtained in Italy and Europe for undamaged buildings, well below code provisions. When damage levels are higher, the fundamental periods increase, but again with values much lower than those provided by codes. Finally, the authors suggest a possible update of the code formula for the simplified estimation of the fundamental period of vibration for existing RC buildings, taking into account also the inelastic behaviour.


2011 ◽  
Vol 462-463 ◽  
pp. 241-246 ◽  
Author(s):  
Farzad Hejazi ◽  
Samira Jilani Kojouri ◽  
Jamal Noorzaei ◽  
M.S. Jaafar ◽  
W.A. Thanoon ◽  
...  

Conventional buildings are mainly designed based on elastic analysis of structures subjected to moderate earthquakes. In this case, the seismic forces are much smaller than the forces introduced by strong ground motions with the considered structural behavior going to nonlinear response during these severe earthquakes. Improving the earthquake resistance of reinforced concrete buildings using a variety of earthquake energy dissipation systems has received considerable attention in recent years by civil engineers. In the present study, a nonlinear computational scheme was developed to predict the complete nonlinear dynamic response of reinforced concrete framed buildings equipped with viscous damper device subjected to earthquake excitation. A finite element program code is developed based on the nonlinear analysis procedure of reinforced concrete buildings equipped with viscous damper devices and a two dimensional, five story models of RC buildings subjected to earthquake were analyzed. Result of nonlinear analysis of RC buildings which furnished by viscous dampers indicated that using of viscous dampers effectively reduced the damages occurring in the building and structural motion during severe earthquakes.


Sign in / Sign up

Export Citation Format

Share Document