scholarly journals Design of Soft Fingers for a Surgical Robotic Hand with Hybrid Structure

Author(s):  
Seda Ozbek ◽  
Erkin Gezgin ◽  
Mustafa Volkan Yazici

Utilization of robot manipulators started to be preferred in many medical applications due to the rapid technological developments occurred in the last decade. Thanks to the studies and applications in the related literature, leaving the usage of classical industrial robot manipulator structures, new designs with respect to the application constraints have been focused on. In light of this, current study focuses on the design of soft fingers that will allow the usage of a robotic hand with hybrid structure on soft tissue handling that requires high precision and compliance. Throughout the study various prototype trials were carried out and their suitability for the system was discussed.

2021 ◽  
Vol 11 (13) ◽  
pp. 5914
Author(s):  
Daniel Reyes-Uquillas ◽  
Tesheng Hsiao

In this article, we aim to achieve manual guidance of a robot manipulator to perform tasks that require strict path following and would benefit from collaboration with a human to guide the motion. The robot can be used as a tool to increase the accuracy of a human operator while remaining compliant with the human instructions. We propose a dual-loop control structure where the outer admittance control loop allows the robot to be compliant along a path considering the projection of the external force to the tangential-normal-binormal (TNB) frame associated with the path. The inner motion control loop is designed based on a modified sliding mode control (SMC) law. We evaluate the system behavior to forces applied from different directions to the end-effector of a 6-DOF industrial robot in a linear motion test. Next, a second test using a 3D path as a tracking task is conducted, where we specify three interaction types: free motion (FM), force-applied motion (FAM), and combined motion with virtual forces (CVF). Results show that the difference of root mean square error (RMSE) among the cases is less than 0.1 mm, which proves the feasibility of applying this method for various path-tracking applications in compliant human–robot collaboration.


2013 ◽  
Vol 694-697 ◽  
pp. 1652-1655
Author(s):  
Ji Yan Wang

PD control method is widely utilized for the dynamic characteristics controlling in industrial robot manipulator area. The disturbance is usually uncertain in reality; the traditional PD controller is limited in that case. In this paper, a PD robust controller is introduced to optimize the convergence and stability of PD controller and avoid the extreme initial driving torque for two-link manipulator system. Using the co-simulation on Matlab/ Simulink and ADAMS, the paper designs a PD robust controller under uncertain upper bound disturbance and completes track control and driving torque simulation trial. The superiority of the two-link manipulators PD robust controller is verified through result comparison and analysis.


Author(s):  
Konstantin Litsin ◽  
◽  
Sergei Baskov ◽  
Yaroslav Makarov ◽  
◽  
...  

Currently, the penetration of industrial robots into all sectors of the economy is increasing. However, there is an acute problem of conducting preliminary tests. The use of the digital twin as a replacement for the industrial robot is driven by high economic costs. In order to reduce the cost of the project, a solution is proposed to conduct preliminary tests on the developed model. The article developed a mathematical model of one of the drives of the industrial robot manipulator Yaskawa Motoman MH50-35. The model is suitable for researching the movement of the robot' tool. A mathematical description of a permanent magnet synchronous motor SGMJV-09A in a rotating coordinate system is given and a block diagram of the power part of the drive is made. A system for regulating the position of the robot's tool with a nonlinear position controller has been synthesized. Based on the results of modeling the operation of an electric drive in the Matlab Simulink environment, the degree of correspondence of the developed model to a real object was assessed and conclusions were drawn about the limits of its applicability for studying the operation of an electric drive of a robotic arm. The accuracy of working out the task for turning the wrist is 0.0001 rad, there is no overshoot in position, and the time for completing a full turn of the tool is 1.07 s.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zhen Yu ◽  
Yuan Zhang

High-precision reducer is the core component of industrial robots. In order to achieve the comprehensive performance testing of precision reducers, an instrument with a vertical layout and a cylindrical structure is designed. As a rotating machine, the inevitable coupling misalignment of the instrument can lead to vibration faults which lead to errors in the test. So it is pretty necessary to diagnose and monitor the coupling misalignment while the instrument is working. The causes of the coupling misaligned fault of the instrument and the relationship between the misalignment fault and torque ripple are analyzed in this paper. A method of using the torque transducer in the measurement chain of the instrument to diagnose the coupling misalignment is proposed in this paper. Many experiments have been done to test the capability of detecting the coupling misalignment using this method. Experimental results show that the amplitude of torque ripple of the shaft is linearly related to the coupling misalignment and is quadratically related to the rotation speed of the shaft when the misalignment exists in the shaft. The combination of components at the rotation frequency (fr) and the additional components can be used to diagnose faults due to coupling misalignment.


1989 ◽  
Vol 42 (4) ◽  
pp. 117-128 ◽  
Author(s):  
S. S. Rao ◽  
P. K. Bhatti

Robotics is a relatively new and evolving technology being applied to manufacturing automation and is fast replacing the special-purpose machines or hard automation as it is often called. Demands for higher productivity, better and uniform quality products, and better working environments are primary reasons for its development. An industrial robot is a multifunctional and computer-controlled mechanical manipulator exhibiting a complex and highly nonlinear behavior. Even though most current robots have anthropomorphic configurations, they have far inferior manipulating abilities compared to humans. A great deal of research effort is presently being directed toward improving their overall performance by using optimal mechanical structures and control strategies. The optimal design of robot manipulators can include kinematic performance characteristics such as workspace, accuracy, repeatability, and redundancy. The static load capacity as well as dynamic criteria such as generalized inertia ellipsoid, dynamic manipulability, and vibratory response have also been considered in the design stages. The optimal control problems typically involve trajectory planning, time-optimal control, energy-optimal control, and mixed-optimal control. The constraints in a robot manipulator design problem usually involve link stresses, actuator torques, elastic deformation of links, and collision avoidance. This paper presents a review of the literature on the issues of optimum design and control of robotic manipulators and also the various optimization techniques currently available for application to robotics.


Sign in / Sign up

Export Citation Format

Share Document