DEEP LEARNING TECHNIQUE - BASED DRONE DETECTION AND TRACKING

Author(s):  
Xuan Tung Truong

The usage of small drones/UAVs is becoming increasingly important in recent years. Consequently, there is a rising potential of small drones being misused for illegal activities such as terrorism, smuggling of drugs, etc. posing high-security risks. Hence, tracking and surveillance of drones are essential to prevent security breaches. This paper resolves the problem of detecting small drones in surveillance videos using deep learning algorithms. Single Shot Detector (SSD) object detection algorithm and MobileNet-v2 architecture as the backbone were used for our experiments. The pre-trained model was re-trained on custom drone synthetic dataset by using transfer learning’s fine-tune technique. The results of detecting drone in our experiments were around 90.8%. The combination of drone detection, Dlib correlation tracking algorithm and centroid tracking algorithm effectively detects and tracks the small drone in various complex environments as well as is able to handle multiple target appearances.

Agriculture ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 160
Author(s):  
Ting Yuan ◽  
Lin Lv ◽  
Fan Zhang ◽  
Jun Fu ◽  
Jin Gao ◽  
...  

The detection of cherry tomatoes in greenhouse scene is of great significance for robotic harvesting. This paper states a method based on deep learning for cherry tomatoes detection to reduce the influence of illumination, growth difference, and occlusion. In view of such greenhouse operating environment and accuracy of deep learning, Single Shot multi-box Detector (SSD) was selected because of its excellent anti-interference ability and self-taught from datasets. The first step is to build datasets containing various conditions in greenhouse. According to the characteristics of cherry tomatoes, the image samples with illumination change, images rotation and noise enhancement were used to expand the datasets. Then training datasets were used to train and construct network model. To study the effect of base network and the input size of networks, one contrast experiment was designed on different base networks of VGG16, MobileNet, Inception V2 networks, and the other contrast experiment was conducted on changing the network input image size of 300 pixels by 300 pixels, 512 pixels by 512 pixels. Through the analysis of the experimental results, it is found that the Inception V2 network is the best base network with the average precision of 98.85% in greenhouse environment. Compared with other detection methods, this method shows substantial improvement in cherry tomatoes detection.


2021 ◽  
Vol 11 (18) ◽  
pp. 8434
Author(s):  
Kaipeng Wang ◽  
Zhijun Meng ◽  
Zhe Wu

Target detection and tracking can be widely used in military and civilian scenarios. Unmanned aerial vehicles (UAVs) have high maneuverability and strong concealment, thus they are very suitable for using as a platform for ground target detection and tracking. Most of the existing target detection and tracking algorithms are aimed at conventional targets. Because of the small scale and the incomplete details of the targets in the aerial image, it is difficult to apply the conventional algorithms to aerial photography from UAVs. This paper proposes a ground target image detection and tracking algorithm applied to UAVs using a revised deep learning technology. Aiming at the characteristics of ground targets in aerial images, target detection algorithms and target tracking algorithms are improved. The target detection algorithm is improved to detect small targets on the ground. The target tracking algorithm is designed to recover the target after the target is lost. The target detection and tracking algorithm is verified on the aerial dataset.


2021 ◽  
Vol 2 ◽  
Author(s):  
Lisette. E. van der Zande ◽  
Oleksiy Guzhva ◽  
T. Bas Rodenburg

Modern welfare definitions not only require that the Five Freedoms are met, but animals should also be able to adapt to changes (i. e., resilience) and reach a state that the animals experience as positive. Measuring resilience is challenging since relatively subtle changes in animal behavior need to be observed 24/7. Changes in individual activity showed potential in previous studies to reflect resilience. A computer vision (CV) based tracking algorithm for pigs could potentially measure individual activity, which will be more objective and less time consuming than human observations. The aim of this study was to investigate the potential of state-of-the-art CV algorithms for pig detection and tracking for individual activity monitoring in pigs. This study used a tracking-by-detection method, where pigs were first detected using You Only Look Once v3 (YOLOv3) and in the next step detections were connected using the Simple Online Real-time Tracking (SORT) algorithm. Two videos, of 7 h each, recorded in barren and enriched environments were used to test the tracking. Three detection models were proposed using different annotation datasets: a young model where annotated pigs were younger than in the test video, an older model where annotated pigs were older than the test video, and a combined model where annotations from younger and older pigs were combined. The combined detection model performed best with a mean average precision (mAP) of over 99.9% in the enriched environment and 99.7% in the barren environment. Intersection over Union (IOU) exceeded 85% in both environments, indicating a good accuracy of the detection algorithm. The tracking algorithm performed better in the enriched environment compared to the barren environment. When false positive tracks where removed (i.e., tracks not associated with a pig), individual pigs were tracked on average for 22.3 min in the barren environment and 57.8 min in the enriched environment. Thus, based on proposed tracking-by-detection algorithm, pigs can be tracked automatically in different environments, but manual corrections may be needed to keep track of the individual throughout the video and estimate activity. The individual activity measured with proposed algorithm could be used as an estimate to measure resilience.


2021 ◽  
Author(s):  
Jixu Hou ◽  
Xiaofeng Xie ◽  
Qian Cai ◽  
Zhengjie Deng ◽  
Houqun Yang ◽  
...  

Abstract Dangerous driving, e.g., using mobile phone while driving, can result in serious traffic problem and threat to safely. To efficiently alleviate such problem, in this paper, we design a intelligent monitoring system to detect the dangerous behavior in driving. The monitoring system is combined by camera, terminal server, target detection algorithm and voice reminder. Furthermore, we applied an efficiently deep learning model, namely mobilenet combined with single shot multi-box detector (mobilenet-SSD), to identify the behavior of driver. To evaluate the performance of proposed system, we construct a dangerous driving dataset which consists of 6796 images. The experimental results show that the proposed system can achieve accuracy of 99% in 100 testing images. It can be used for real-time monitoring of the driver’s status.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guoyuan Shi ◽  
Yingjie Zhang ◽  
Manni Zeng

Purpose Workpiece sorting is a key link in industrial production lines. The vision-based workpiece sorting system is non-contact and widely applicable. The detection and recognition of workpieces are the key technologies of the workpiece sorting system. To introduce deep learning algorithms into workpiece detection and improve detection accuracy, this paper aims to propose a workpiece detection algorithm based on the single-shot multi-box detector (SSD). Design/methodology/approach Propose a multi-feature fused SSD network for fast workpiece detection. First, the multi-view CAD rendering images of the workpiece are used as deep learning data sets. Second, the visual geometry group network was trained for workpiece recognition to identify the category of the workpiece. Third, this study designs a multi-level feature fusion method to improve the detection accuracy of SSD (especially for small objects); specifically, a feature fusion module is added, which uses “element-wise sum” and “concatenation operation” to combine the information of shallow features and deep features. Findings Experimental results show that the actual workpiece detection accuracy of the method can reach 96% and the speed can reach 41 frames per second. Compared with the original SSD, the method improves the accuracy by 7% and improves the detection performance of small objects. Originality/value This paper innovatively introduces the SSD detection algorithm into workpiece detection in industrial scenarios and improves it. A feature fusion module has been added to combine the information of shallow features and deep features. The multi-feature fused SSD network proves the feasibility and practicality of introducing deep learning algorithms into workpiece sorting.


2020 ◽  
Vol 10 (10) ◽  
pp. 3544 ◽  
Author(s):  
Mahdi Bahaghighat ◽  
Qin Xin ◽  
Seyed Ahmad Motamedi ◽  
Morteza Mohammadi Zanjireh ◽  
Antoine Vacavant

Today, energy issues are more important than ever. Because of the importance of environmental concerns, clean and renewable energies such as wind power have been most welcomed globally, especially in developing countries. Worldwide development of these technologies leads to the use of intelligent systems for monitoring and maintenance purposes. Besides, deep learning as a new area of machine learning is sharply developing. Its strong performance in computer vision problems has conducted us to provide a high accuracy intelligent machine vision system based on deep learning to estimate the wind turbine angular velocity, remotely. This velocity along with other information such as pitch angle and yaw angle can be used to estimate the wind farm energy production. For this purpose, we have used SSD (Single Shot Multi-Box Detector) object detection algorithm and some specific classification methods based on DenseNet, SqueezeNet, ResNet50, and InceptionV3 models. The results indicate that the proposed system can estimate rotational speed with about 99.05 % accuracy.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Xiaoling Chen ◽  
Kuiling Zhang ◽  
Shuying Lin ◽  
Kai Feng Dai ◽  
Yang Yun

Purpose. In order to resolve the situation of high missed diagnosis rate and high misdiagnosis rate of the pathological analysis of the gastrointestinal endoscopic images by experts, we propose an automatic polyp detection algorithm based on Single Shot Multibox Detector (SSD). Method. In the paper, SSD is based on VGG-16, the fully connected layer is changed to a convolutional layer, and four convolutional layers with successively decreasing scales are added as a new network structure. In order to verify the practicability, it is not only compared with manual polyp detection but also with Mask R-CNN. Results. Multiple experimental results show that the mean Average Precision (mAP) of the SSD network is 95.74%, which is 12.4% higher than the manual detection and 5.7% higher than the Mask R-CNN. When detecting a single frame of image, the detection speed of SSD is 8.41 times that of manual detection. Conclusion. Based on the traditional pattern recognition algorithm and the target detection algorithm using deep learning, we select a variety of algorithms to identify and classify polyps to achieve efficient detection results. Our research demonstrates that deep learning has a lot of room for development in the field of gastrointestinal image recognition.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4646 ◽  
Author(s):  
Jingwei Cao ◽  
Chuanxue Song ◽  
Shixin Song ◽  
Silun Peng ◽  
Da Wang ◽  
...  

Vehicle detection is an indispensable part of environmental perception technology for smart cars. Aiming at the issues that conventional vehicle detection can be easily restricted by environmental conditions and cannot have accuracy and real-time performance, this article proposes a front vehicle detection algorithm for smart car based on improved SSD model. Single shot multibox detector (SSD) is one of the current mainstream object detection frameworks based on deep learning. This work first briefly introduces the SSD network model and analyzes and summarizes its problems and shortcomings in vehicle detection. Then, targeted improvements are performed to the SSD network model, including major advancements to the basic structure of the SSD model, the use of weighted mask in network training, and enhancement to the loss function. Finally, vehicle detection experiments are carried out on the basis of the KITTI vision benchmark suite and self-made vehicle dataset to observe the algorithm performance in different complicated environments and weather conditions. The test results based on the KITTI dataset show that the mAP value reaches 92.18%, and the average processing time per frame is 15 ms. Compared with the existing deep learning-based detection methods, the proposed algorithm can obtain accuracy and real-time performance simultaneously. Meanwhile, the algorithm has excellent robustness and environmental adaptability for complicated traffic environments and anti-jamming capabilities for bad weather conditions. These factors are of great significance to ensure the accurate and efficient operation of smart cars in real traffic scenarios and are beneficial to vastly reduce the incidence of traffic accidents and fully protect people’s lives and property.


2020 ◽  
Vol 71 (7) ◽  
pp. 868-880
Author(s):  
Nguyen Hong-Quan ◽  
Nguyen Thuy-Binh ◽  
Tran Duc-Long ◽  
Le Thi-Lan

Along with the strong development of camera networks, a video analysis system has been become more and more popular and has been applied in various practical applications. In this paper, we focus on person re-identification (person ReID) task that is a crucial step of video analysis systems. The purpose of person ReID is to associate multiple images of a given person when moving in a non-overlapping camera network. Many efforts have been made to person ReID. However, most of studies on person ReID only deal with well-alignment bounding boxes which are detected manually and considered as the perfect inputs for person ReID. In fact, when building a fully automated person ReID system the quality of the two previous steps that are person detection and tracking may have a strong effect on the person ReID performance. The contribution of this paper are two-folds. First, a unified framework for person ReID based on deep learning models is proposed. In this framework, the coupling of a deep neural network for person detection and a deep-learning-based tracking method is used. Besides, features extracted from an improved ResNet architecture are proposed for person representation to achieve a higher ReID accuracy. Second, our self-built dataset is introduced and employed for evaluation of all three steps in the fully automated person ReID framework.


Sign in / Sign up

Export Citation Format

Share Document