A fast workpiece detection method based on multi-feature fused SSD

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guoyuan Shi ◽  
Yingjie Zhang ◽  
Manni Zeng

Purpose Workpiece sorting is a key link in industrial production lines. The vision-based workpiece sorting system is non-contact and widely applicable. The detection and recognition of workpieces are the key technologies of the workpiece sorting system. To introduce deep learning algorithms into workpiece detection and improve detection accuracy, this paper aims to propose a workpiece detection algorithm based on the single-shot multi-box detector (SSD). Design/methodology/approach Propose a multi-feature fused SSD network for fast workpiece detection. First, the multi-view CAD rendering images of the workpiece are used as deep learning data sets. Second, the visual geometry group network was trained for workpiece recognition to identify the category of the workpiece. Third, this study designs a multi-level feature fusion method to improve the detection accuracy of SSD (especially for small objects); specifically, a feature fusion module is added, which uses “element-wise sum” and “concatenation operation” to combine the information of shallow features and deep features. Findings Experimental results show that the actual workpiece detection accuracy of the method can reach 96% and the speed can reach 41 frames per second. Compared with the original SSD, the method improves the accuracy by 7% and improves the detection performance of small objects. Originality/value This paper innovatively introduces the SSD detection algorithm into workpiece detection in industrial scenarios and improves it. A feature fusion module has been added to combine the information of shallow features and deep features. The multi-feature fused SSD network proves the feasibility and practicality of introducing deep learning algorithms into workpiece sorting.

2021 ◽  
Author(s):  
Ming Li ◽  
Dezhi Han ◽  
Dun Li ◽  
Han Liu ◽  
Chin- Chen Chang

Abstract Network intrusion detection, which takes the extraction and analysis of network traffic features as the main method, plays a vital role in network security protection. The current network traffic feature extraction and analysis for network intrusion detection mostly uses deep learning algorithms. Currently, deep learning requires a lot of training resources, and have weak processing capabilities for imbalanced data sets. In this paper, a deep learning model (MFVT) based on feature fusion network and Vision Transformer architecture is proposed, to which improves the processing ability of imbalanced data sets and reduces the sample data resources needed for training. Besides, to improve the traditional raw traffic features extraction methods, a new raw traffic features extraction method (CRP) is proposed, the CPR uses PCA algorithm to reduce all the processed digital traffic features to the specified dimension. On the IDS 2017 dataset and the IDS 2012 dataset, the ablation experiments show that the performance of the proposed MFVT model is significantly better than other network intrusion detection models, and the detection accuracy can reach the state-of-the-art level. And, When MFVT model is combined with CRP algorithm, the detection accuracy is further improved to 99.99%.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhoufeng Liu ◽  
Shanliang Liu ◽  
Chunlei Li ◽  
Bicao Li

PurposeThis paper aims to propose a new method to solve the two problems in fabric defect detection. Current state-of-the-art industrial products defect detectors are deep learning-based, which incurs some additional problems: (1) The model is difficult to train due to too few fabric datasets for the difficulty of collecting pictures; (2) The detection accuracy of existing methods is insufficient to implement in the industrial field. This study intends to propose a new method which can be applied to fabric defect detection in the industrial field.Design/methodology/approachTo cope with exist fabric defect detection problems, the article proposes a novel fabric defect detection method based on multi-source feature fusion. In the training process, both layer features and source model information are fused to enhance robustness and accuracy. Additionally, a novel training model called multi-source feature fusion (MSFF) is proposed to tackle the limited samples and demand to obtain fleet and precise quantification automatically.FindingsThe paper provides a novel fabric defect detection method, experimental results demonstrate that the proposed method achieves an AP of 93.9 and 98.8% when applied to the TILDA(a public dataset) and ZYFD datasets (a real-shot dataset), respectively, and outperforms 5.9% than fine-tuned SSD (single shot multi-box detector).Research limitations/implicationsOur proposed algorithm can provide a promising tool for fabric defect detection.Practical implicationsThe paper includes implications for the development of a powerful brand image, the development of “brand ambassadors” and for managing the balance between stability and change.Social implicationsThis work provides technical support for real-time detection on industrial sites, advances the process of intelligent manual detection of fabric defects and provides a technical reference for object detection on other industrialOriginality/valueTherefore, our proposed algorithm can provide a promising tool for fabric defect detection.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chang Liu ◽  
Samad M.E. Sepasgozar ◽  
Sara Shirowzhan ◽  
Gelareh Mohammadi

Purpose The practice of artificial intelligence (AI) is increasingly being promoted by technology developers. However, its adoption rate is still reported as low in the construction industry due to a lack of expertise and the limited reliable applications for AI technology. Hence, this paper aims to present the detailed outcome of experimentations evaluating the applicability and the performance of AI object detection algorithms for construction modular object detection. Design/methodology/approach This paper provides a thorough evaluation of two deep learning algorithms for object detection, including the faster region-based convolutional neural network (faster RCNN) and single shot multi-box detector (SSD). Two types of metrics are also presented; first, the average recall and mean average precision by image pixels; second, the recall and precision by counting. To conduct the experiments using the selected algorithms, four infrastructure and building construction sites are chosen to collect the required data, including a total of 990 images of three different but common modular objects, including modular panels, safety barricades and site fences. Findings The results of the comprehensive evaluation of the algorithms show that the performance of faster RCNN and SSD depends on the context that detection occurs. Indeed, surrounding objects and the backgrounds of the objects affect the level of accuracy obtained from the AI analysis and may particularly effect precision and recall. The analysis of loss lines shows that the loss lines for selected objects depend on both their geometry and the image background. The results on selected objects show that faster RCNN offers higher accuracy than SSD for detection of selected objects. Research limitations/implications The results show that modular object detection is crucial in construction for the achievement of the required information for project quality and safety objectives. The detection process can significantly improve monitoring object installation progress in an accurate and machine-based manner avoiding human errors. The results of this paper are limited to three construction sites, but future investigations can cover more tasks or objects from different construction sites in a fully automated manner. Originality/value This paper’s originality lies in offering new AI applications in modular construction, using a large first-hand data set collected from three construction sites. Furthermore, the paper presents the scientific evaluation results of implementing recent object detection algorithms across a set of extended metrics using the original training and validation data sets to improve the generalisability of the experimentation. This paper also provides the practitioners and scholars with a workflow on AI applications in the modular context and the first-hand referencing data.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenli Zhang ◽  
Yuxin Liu ◽  
Kaizhen Chen ◽  
Huibin Li ◽  
Yulin Duan ◽  
...  

In recent years, deep-learning-based fruit-detection technology has exhibited excellent performance in modern horticulture research. However, deploying deep learning algorithms in real-time field applications is still challenging, owing to the relatively low image processing capability of edge devices. Such limitations are becoming a new bottleneck and hindering the utilization of AI algorithms in modern horticulture. In this paper, we propose a lightweight fruit-detection algorithm, specifically designed for edge devices. The algorithm is based on Light-CSPNet as the backbone network, an improved feature-extraction module, a down-sampling method, and a feature-fusion module, and it ensures real-time detection on edge devices while maintaining the fruit-detection accuracy. The proposed algorithm was tested on three edge devices: NVIDIA Jetson Xavier NX, NVIDIA Jetson TX2, and NVIDIA Jetson NANO. The experimental results show that the average detection precision of the proposed algorithm for orange, tomato, and apple datasets are 0.93, 0.847, and 0.850, respectively. Deploying the algorithm, the detection speed of NVIDIA Jetson Xavier NX reaches 21.3, 24.8, and 22.2 FPS, while that of NVIDIA Jetson TX2 reaches 13.9, 14.1, and 14.5 FPS and that of NVIDIA Jetson NANO reaches 6.3, 5.0, and 8.5 FPS for the three datasets. Additionally, the proposed algorithm provides a component add/remove function to flexibly adjust the model structure, considering the trade-off between the detection accuracy and speed in practical usage.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022041
Author(s):  
Caiyu Liu ◽  
Zuofeng Zhou ◽  
Qingquan Wu

Abstract As an important part of road maintenance, the detection of road sprinkles has attracted extensive attention from scholars. However, after years of research, there are still some problems in the detection of road sprinkles. First of all, the detection accuracy of traditional detection algorithm is deficient. Second, deep learning approaches have great limitations for there are various kinds of sprinkles which makes it difficult to build a data set. In view of the above problems, this paper proposes a road sprinkling detection method based on multi-feature fusion. The characteristics of color, gradient, luminance and neighborhood information were considered in our method. Compared with other traditional methods, our method has higher detection accuracy. In addition, compared with deep learning-based methods, our approach doesn’t involve creating a complex data set and reduces costs. The main contributions of this paper are as follows: I. For the first time, the density clustering algorithm is combined with the detection of sprinkles, which provides a new idea for this field. II. The use of multi-feature fusion improves the accuracy and robustness of the traditional method which makes the algorithm usable in many real-world scenarios.


2021 ◽  
Vol 12 (1) ◽  
pp. 107
Author(s):  
Dongjun Li ◽  
Guoying Meng ◽  
Zhiyuan Sun ◽  
Lili Xu

In the coal mining process, various types of tramp materials will be mixed into the raw coal, which will affect the quality of the coal and endanger the normal operation of the equipment. Automatic detection of tramp materials objects is an important process and basis for efficient coal sorting. However, previous research has focused on the detection of gangue, ignoring the detection of other types of tramp materials, especially small targets. Because the initial Single Shot MultiBox Detector (SSD) lacks the efficient use of feature maps, it is difficult to obtain stable results when detecting tramp materials objects. In this article, an object detection algorithm based on feature fusion and dense convolutional network is proposed, which is called tramp materials in raw coal single-shot detector (TMRC-SSD), to detect five types of tramp materials such as gangue, bolt, stick, iron sheet, and iron chain. In this algorithm, a modified DenseNet is first designed and a four-stage feature extractor is used to down-sample the feature map stably. After that, we use the dilation convolution and multi-branch structure to enrich the receptive field. Finally, in the feature fusion module, we designed cross-layer feature fusion and attention fusion modules to realize the semantic interaction of feature maps. The experiments show that the module we designed is effective. This method is better than the existing model. When the input image is 300 × 300 pixels, it can reach 96.12% MAP and 24FPS. Especially in the detection of small objects, the detection accuracy has increased by 4.1 to 95.57%. The experimental results show that this method can be applied to the actual detection of tramp materials objects in raw coal.


2021 ◽  
Vol 13 (10) ◽  
pp. 1909
Author(s):  
Jiahuan Jiang ◽  
Xiongjun Fu ◽  
Rui Qin ◽  
Xiaoyan Wang ◽  
Zhifeng Ma

Synthetic Aperture Radar (SAR) has become one of the important technical means of marine monitoring in the field of remote sensing due to its all-day, all-weather advantage. National territorial waters to achieve ship monitoring is conducive to national maritime law enforcement, implementation of maritime traffic control, and maintenance of national maritime security, so ship detection has been a hot spot and focus of research. After the development from traditional detection methods to deep learning combined methods, most of the research always based on the evolving Graphics Processing Unit (GPU) computing power to propose more complex and computationally intensive strategies, while in the process of transplanting optical image detection ignored the low signal-to-noise ratio, low resolution, single-channel and other characteristics brought by the SAR image imaging principle. Constantly pursuing detection accuracy while ignoring the detection speed and the ultimate application of the algorithm, almost all algorithms rely on powerful clustered desktop GPUs, which cannot be implemented on the frontline of marine monitoring to cope with the changing realities. To address these issues, this paper proposes a multi-channel fusion SAR image processing method that makes full use of image information and the network’s ability to extract features; it is also based on the latest You Only Look Once version 4 (YOLO-V4) deep learning framework for modeling architecture and training models. The YOLO-V4-light network was tailored for real-time and implementation, significantly reducing the model size, detection time, number of computational parameters, and memory consumption, and refining the network for three-channel images to compensate for the loss of accuracy due to light-weighting. The test experiments were completed entirely on a portable computer and achieved an Average Precision (AP) of 90.37% on the SAR Ship Detection Dataset (SSDD), simplifying the model while ensuring a lead over most existing methods. The YOLO-V4-lightship detection algorithm proposed in this paper has great practical application in maritime safety monitoring and emergency rescue.


Author(s):  
Zhenying Xu ◽  
Ziqian Wu ◽  
Wei Fan

Defect detection of electromagnetic luminescence (EL) cells is the core step in the production and preparation of solar cell modules to ensure conversion efficiency and long service life of batteries. However, due to the lack of feature extraction capability for small feature defects, the traditional single shot multibox detector (SSD) algorithm performs not well in EL defect detection with high accuracy. Consequently, an improved SSD algorithm with modification in feature fusion in the framework of deep learning is proposed to improve the recognition rate of EL multi-class defects. A dataset containing images with four different types of defects through rotation, denoising, and binarization is established for the EL. The proposed algorithm can greatly improve the detection accuracy of the small-scale defect with the idea of feature pyramid networks. An experimental study on the detection of the EL defects shows the effectiveness of the proposed algorithm. Moreover, a comparison study shows the proposed method outperforms other traditional detection methods, such as the SIFT, Faster R-CNN, and YOLOv3, in detecting the EL defect.


2021 ◽  
Vol 13 (19) ◽  
pp. 10690
Author(s):  
Heelak Choi ◽  
Sang-Ik Suh ◽  
Su-Hee Kim ◽  
Eun Jin Han ◽  
Seo Jin Ki

This study aimed to investigate the applicability of deep learning algorithms to (monthly) surface water quality forecasting. A comparison was made between the performance of an autoregressive integrated moving average (ARIMA) model and four deep learning models. All prediction algorithms, except for the ARIMA model working on a single variable, were tested with univariate inputs consisting of one of two dependent variables as well as multivariate inputs containing both dependent and independent variables. We found that deep learning models (6.31–18.78%, in terms of the mean absolute percentage error) showed better performance than the ARIMA model (27.32–404.54%) in univariate data sets, regardless of dependent variables. However, the accuracy of prediction was not improved for all dependent variables in the presence of other associated water quality variables. In addition, changes in the number of input variables, sliding window size (i.e., input and output time steps), and relevant variables (e.g., meteorological and discharge parameters) resulted in wide variation of the predictive accuracy of deep learning models, reaching as high as 377.97%. Therefore, a refined search identifying the optimal values on such influencing factors is recommended to achieve the best performance of any deep learning model in given multivariate data sets.


2021 ◽  
Vol 2078 (1) ◽  
pp. 012008
Author(s):  
Hui Liu ◽  
Keyang Cheng

Abstract Aiming at the problem of false detection and missed detection of small targets and occluded targets in the process of pedestrian detection, a pedestrian detection algorithm based on improved multi-scale feature fusion is proposed. First, for the YOLOv4 multi-scale feature fusion module PANet, which does not consider the interaction relationship between scales, PANet is improved to reduce the semantic gap between scales, and the attention mechanism is introduced to learn the importance of different layers to strengthen feature fusion; then, dilated convolution is introduced. Dilated convolution reduces the problem of information loss during the downsampling process; finally, the K-means clustering algorithm is used to redesign the anchor box and modify the loss function to detect a single category. The experimental results show that the improved pedestrian detection algorithm in the INRIA and WiderPerson data sets under different congestion conditions, the AP reaches 96.83% and 59.67%, respectively. Compared with the pedestrian detection results of the YOLOv4 model, the algorithm improves by 2.41% and 1.03%, respectively. The problem of false detection and missed detection of small targets and occlusion has been significantly improved.


Sign in / Sign up

Export Citation Format

Share Document