scholarly journals Freeze-substitution transmission electron microscopy of gentian shoot tips cryopreserved at ultra low temperatures

2018 ◽  
Vol 35 (4) ◽  
pp. 335-340
Author(s):  
Daisuke Tanaka ◽  
Takao Niino ◽  
Seizo Fujikawa ◽  
Matsuo Uemura
1999 ◽  
Vol 557 ◽  
Author(s):  
J. Yamasaki ◽  
S. Takeda

AbstractThe structural properties of the amorphous Si (a-Si), which was created from crystalline silicon by 2 MeV electron irradiation at low temperatures about 25 K, are examined in detail by means of transmission electron microscopy and transmission electron diffraction. The peak positions in the radial distribution function (RDF) of the a-Si correspond well to those of a-Si fabricated by other techniques. The electron-irradiation-induced a-Si returns to crystalline Si after annealing at 550°C.


1987 ◽  
Vol 94 ◽  
Author(s):  
S. W. Lu ◽  
C. W. Nieh ◽  
J. J. Chu ◽  
L. J. Chen

ABSTRACTThe influences of implantation impurities, including BF2, B, F, As and P on the formation of epitaxial NiSi2 in nickel thin films on ion-implanted silicon have been investigated by transmission electron microscopy.The presence of BF2, B, and F atoms was observed to promote the epitaxial growth of NiSi2 at low temperatures. Little or no effect on the formation of NiSi2 was found in samples implanted with As or P ions.The results indicated that the influences of the implantation impurities are not likely to be electronic in origin. Good correlation, on the other hand, was found between the atomic size factor and resulting stress and NiSi2 epitaxy at low temperatures.


2019 ◽  
Vol 966 ◽  
pp. 163-168 ◽  
Author(s):  
Yulia Kirana Lahsmin ◽  
Dahlang Tahir ◽  
Bualkar Abdullah ◽  
Sultan Ilyas ◽  
Inayatul Mutmainna

Carbon Nanosphere (CNs) has been successfully synthesized from bamboo fibers at low temperatures by carbonization and activation. For activation used Potassium Hydroxide (KOH) at temperature 105°C, 155°C, 205°C, 255°C and 305°C. X-Ray Diffraction (XRD) spectra shows hexagonal and amorphous phase and Fourier Transform Infrared (FTIR) spectra shows decrease C-O bond with increasing activation temperature. Transmission Electron Microscopy (TEM) image for activation temperature of 105°C confirmed that sources the formation of Carbon Nanosphere. In this study shows bamboo fiber has a high potential as a carbon nanosphere material.


1999 ◽  
Vol 580 ◽  
Author(s):  
T.K. Croat ◽  
A.K. Gangopadhyay ◽  
K.F. Kelton

AbstractThe crystallization kinetics of Al-Gd-La-Ni metallic glasses to nanostructured phases are analyzed using differential scanning calorimetry and transmission electron microscopy. In a narrow alloy composition range near Al88Gd6La2Ni4, TEM reveals an amorphous phase separation that occurs upon annealing at low temperatures prior to crystallization. Al-enriched regions, typically 40 nm in diameter, bounded by rare-earth rich regions, are visible. Upon crystallization, α-Al forms preferentially at the interface between these phase separated regions. The relevance of this crystallization sequence to previous work in Al-RE-TM glasses and to the evolution of nanoscale microstructures common in the crystallization of other metallic glasses are discussed.


1992 ◽  
Vol 262 ◽  
Author(s):  
M. Seibt ◽  
J. Imschweiler ◽  
H. -A. Heftier

ABSTRACTWe have used high resolution transmission electron microscopy to study the formation of end- of- range defects after pre- amorphization due to Ge+ - implantation and subsequent furnace annealing at temperatures below 550 C. It is shown that depending on the annealing conditions two types of extrinsic stacking faults (SFs) are formed, i.e. {113}- defects or Frank- type {111} SFs. We present a scheme allowing the controlled deposition of Si self- interstitials into {113}- defects, which can be removed more easily than Frank type SFs during subsequent RTA under constraints of low thermal budget.


2011 ◽  
Vol 17 (S2) ◽  
pp. 162-163
Author(s):  
E Ebong ◽  
F Macaluso ◽  
D Spray ◽  
J Tarbell

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


Sign in / Sign up

Export Citation Format

Share Document