scholarly journals SmCOI1 affects anther dehiscence in a male-sterile Solanum melongena line

2020 ◽  
Vol 37 (1) ◽  
pp. 1-8
Author(s):  
Shao-Wei Zhang ◽  
Chao Yuan ◽  
Li-Yu An ◽  
Yi Niu ◽  
Ming Song ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Zhimin Wang ◽  
Chao Yuan ◽  
Shaowei Zhang ◽  
Shibing Tian ◽  
Qinglin Tang ◽  
...  

Anther indehiscence is an important form of functional male sterility that can facilitate the production of hybrid seeds. However, the molecular mechanisms of anther indehiscence-based male sterility in eggplant (Solanum melongena L.) have not been thoroughly explored. We performed transcriptome sequencing and real-time quantitative reverse transcription-PCR (qRT-PCR) assays to compare the fertile line (F142) and male sterile line (S12) eggplant. We identified 2,670 differentially expressed genes (DEGs) between lines. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified 31 DEGs related to hormone biosynthesis. We, therefore, measured phytohormone contents, such as jasmonic acid (JA), auxin (IAA), gibberellin (GA), and abscisic acid (ABA) in S12 and F142. There were differences in IAA, GA3, and ABA levels between S12 and F142, while JA levels were significantly lower in S12 than in F142. Five key genes in the JA signaling pathway were differentially expressed in S12 vs. F142. Of these, SmJAZ1 and SmJAR1 were significantly upregulated and SmDAD1, SmLOX, and SmCOI1 were downregulated in S12 vs. F142. Protein–protein interaction studies identified a direct interaction between SmDAD1 and SmLOX, while SmDAD1 failed to interact with SmJAR1, SmCOI1, and SmJAZ1. The data represent a valuable resource for further exploration of regulatory mechanisms underlying anther dehiscence in eggplant.


1993 ◽  
Vol 71 (4) ◽  
pp. 629-638 ◽  
Author(s):  
J. Dawson ◽  
Z. A. Wilson ◽  
M. G. M. Aarts ◽  
A. F. Braithwaite ◽  
L. G. Briarty ◽  
...  

Five new recessive male-sterile mutants of Arabidopsis thaliana were isolated following seed mutagenesis by X-rays and ethyl methanesulfonate. The cytology of plants homozygous for the msY and msW mutations suggested that pollen development in these lines became abnormal at or before meiosis. The msK mutation caused faulty timing of synthesis or turnover and distribution of callose. In plants homozygous for the msZ mutation, pollen development failed at a late stage. In wild-type plants, the stamen filament elongated just prior to anther dehiscence. In contrast, in the msZ mutant stamen elongation did not occur. Pollen in msH homozygotes was fertile, but anthers failed to dehisce. The msI mutant of J.H. Van der Ween and P. Wirtz (1968. Euphytica 17: 371 – 377) was included in the present study. Pollen development in this mutant failed shortly after microspore release from tetrads. Complementation tests confirmed that the ms mutations were at different loci. Reduced transmission of certain ms genes was observed. Key words: Arabidopsis thaliana, male sterile mutants, anther dehiscence, callose, inheritance.


2020 ◽  
Author(s):  
Zhimin Wang ◽  
Shaowei Zhang ◽  
Chao Yuan ◽  
Yi Niu ◽  
Qinglin Tang ◽  
...  

Abstract Background: Anther indehiscence is an important form of functional male sterility that can facilitate the production of hybrid seeds. However, the molecular mechanisms of anther indehiscence-based male sterility in eggplant (Solanum melongena L.) have not been thoroughly explored. Therefore, we performed RNA-seq analysis to investigate the molecular mechanisms of anther dehiscence in eggplant. Results: We used transcriptome sequencing and qRT-PCR assays to compare the anthers of normally developing (F142) and anther indehiscent (S12) eggplant. We identified 2670 differentially expressed genes between lines. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified 31 differentially expressed genes related to hormone biosynthesis. We therefore measured the contents of the phytohormones jasmonic acid (JA), IAA, GA3 and ABA in S12 and F142. There were no significant differences in IAA, GA3 or ABA levels between S12 and F142. However, JA levels were significantly lower in S12 than in F142. Five key genes in the JA signaling pathway were differentially expressed in S12 vs. F142. Of these, SmJAZ and SmJAR-like were significantly up-regulated and SmDAD1, SmLOX and SmCOI1 were down-regulated in S12 vs. F142. In DNA-protein interaction studies, SmLOX, SmAOC, SmOPR3, SmCOI1 and SmJAZ1 failed to be enriched on the chromatin of SmDAD1. Protein–protein interaction studies identified a direct interaction between SmDAD1 and SmLOX, but SmDAD1 failed to interact with SmAOC, SmOPR3, SmCOI1 and SmJAZ1. Conclusion: JA is an essential factor affecting anther dehiscence in eggplant. SmDAD1 interacts with SmLOX to alter JA levels, thereby regulating anther dehiscence. Our data represent a valuable resource for further exploring the regulatory mechanisms underlying anther dehiscence in eggplant.


1979 ◽  
Vol 59 (3) ◽  
pp. 627-633 ◽  
Author(s):  
G. J. SCOLES ◽  
L. E. EVANS

Pollen fertility and anther dehiscence of two cytoplasmic male-sterile lines of spring rye (Secale cereale L.), their maintainers, their restorers and the F1 between each sterile and restorer were investigated at three temperature regimes (15/10, 20/15 and 25/20 °C). In a second experiment, the anther dehiscence of five additional sterile/restorer hybrids was investigated at the same temperatures. Anthers of male-sterile plants did not contain pollen grains and were non-dehiscent at all temperatures. Pollen fertility of maintainer, restorer and sterile/restorer hybrids varied with temperatures. All anthers of maintainer and restorer lines were fully dehiscent, but partially dehiscent and non-dehiscent anthers occurred in the sterile/restorer hybrids. Anthers of florets in the upper and lower portions of spikes of the sterile/restorer hybrids were often partially dehiscent or non-dehiscent. Variation among tillers of a plant with respect to this character was low, but variation among plants of a sterile/restorer hybrid was high, suggesting genetic segregation. The classification of an anther as either dehiscent, partially dehiscent or non-dehiscent was directly related to pollen fertility. Better restoration of fertility was obtained at temperatures of 20/15 or 25/20 °C than at 15/10 °C.


1979 ◽  
Vol 57 (6) ◽  
pp. 602-618 ◽  
Author(s):  
B. A. Young ◽  
J. Schulz-Schaeffer ◽  
T. W. Carroll

Several different expressions of male sterility were observed in the plants sampled for the study of pollen and anther development in the third substitution backcross generation to intermediate wheatgrass. These included (1) pollen abortion following engorgement with starch, (2) abortion of microspores with exine abnormalities (found most often in plants with a high degree of meiotic irregularities), (3) abortion of microspores with normal exines, (4) release at anther dehiscence of normal-appearing late vacuolate microspores, (5) enlargement of one of the parietal layers of the anther, and (6) tapetal abnormalities, including orbicular wall malformations. Anthers from plants which were male sterile or partially male sterile and meiotically irregular were shorter than anthers from fertile or partially male-sterile, meiotically regular plants.Definite statements about specific causes of the male sterility could not be made. Meiotic irregularities may be involved in some of the male sterility, and exine malformations appeared to be directly related to sterile microspores. Tapetal disturbances were observed infrequently. Probably the consequences of several factors were observed in the backcross material.


2021 ◽  
Author(s):  
Seongjun Kim ◽  
Sunggil Kim

Abstract A novel male-sterility trait was identified in a radish (Raphanus sativus L.) population. Although the size of male-sterile anthers was comparable to that of normal flowers, no pollen grain was observed during anther dehiscence. However, dissection of male-sterile anthers revealed an abundance of normal pollen grains. Analysis of segregating populations showed that a single recessive locus, designated RsMs1 conferred male sterility. Based on two radish draft genome sequences, molecular markers were developed to delimit the genomic region harboring the RsMs1. The region was narrowed down to approximately 27 kb after analyzing recombinants selected from 7,511 individuals of a segregating population. Sequencing of the delimited region yielded six putative genes including four genes expressed in the floral tissue, and one gene with significant differential expression between male-fertile and male-sterile individuals of a segregating population. This differentially expressed gene was orthologous to the Arabidopsis MYB26 gene, which played a critical role in anther dehiscence. Excluding a synonymous single nucleotide polymorphism in exon3, no polymorphism involving coding and putative promoter regions was detected between alleles. A 955-bp insertion was identified 7.5 kb upstream of the recessive allele. Highly conserved motifs among four Brassicaceae species were identified around this insertion site, suggesting the presence of putative enhancer sequences. A functional marker was developed for genotyping of the RsMs1 based on the 955-bp insertion. A total of 120 PI accessions were analyzed using this marker, and 11 accessions were shown to carry the recessive RsMs1 allele.


Sign in / Sign up

Export Citation Format

Share Document