scholarly journals Identifying the Appropriate Position on the Ground Plane for MIMO Antennas Using Characteristic Mode Analysis

2016 ◽  
Vol 16 (2) ◽  
pp. 119-125 ◽  
Author(s):  
Jusun Won ◽  
Sinhyung Jeon ◽  
Sangwook Nam
2021 ◽  
Vol 35 (11) ◽  
pp. 1318-1319
Author(s):  
Mohamed Hamdalla ◽  
Anthony Caruso ◽  
Ahmed Hassan

Electromagnetic coupling to realistic wire configurations exhibit large variations with respect to the frequency, incident angle, and polarization of the interfering signal. In this work, Characteristic Mode Analysis (CMA) is used to calculate the fundamental modes of a terminated wire above an infinite ground plane. Using the properties of the modes, the coupled currents to the wire’s loads are predicted for different incident excitations. Using this simple but practical wire configuration, we show the versatility of CMA in practical electromagnetic interference and coupling applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zakaria Mahlaoui ◽  
Eva Antonino-Daviu ◽  
Adnane Latif ◽  
Miguel Ferrando-Bataller

A frequency reconfigurable patch antenna design based on the characteristic mode analysis is presented. The antenna presents a reconfigurable lower band and a steady band at higher frequencies. A slot is etched on the ground plane of the antenna, where two varactor diodes are placed on each side of the slot in order to tune the lower band. The first resonant frequency shifts down by varying the reverse voltage of the varactor, whereas the second operating frequency keeps stable. The proposed antenna is designed to cover WLAN bands, offering a first band operating at 2 GHz and a second band ranging from 5.3 GHz to 5.8 GHz. A prototype has been fabricated and measurements are provided, which validate the proposed analysis, method, and design procedure.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Lei Chang ◽  
Ling-Lu Chen ◽  
Jian-Qiang Zhang ◽  
Dan Li

A wideband circularly polarized (CP) antenna is presented to achieve enhanced impedance, axial ratio (AR), and gain bandwidths. The antenna consists of two circular patches, a split-ring microstrip line with six probes, and a circular ground plane. By using these six probes which are placed in sequence on the split-ring microstrip line, the operating bandwidth of the proposed antenna is increased. The characteristic mode method is used to analyze different modes of the antenna and reveal the mechanism of extending the 3-dB AR bandwidth. Measured results show that the proposed antenna obtains an impedance bandwidth of 1.486–2.236 GHz (40.3%) for S11 ≤ −18 dB, a 3-dB AR bandwidth of 1.6–2.2 GHz (31.6%), and a boresight gain of 8.89 ± 0.87 dBic.


2021 ◽  
Vol 11 (4) ◽  
pp. 1542
Author(s):  
Adamu Halilu Jabire ◽  
Adnan Ghaffar ◽  
Xue Jun Li ◽  
Anas Abdu ◽  
Sani Saminu ◽  
...  

In this article, a novel metamaterial inspired UWB/multiple-input-multiple-output (MIMO) antenna is presented. The proposed antenna consists of a circular metallic part which formed the patch and a partial ground plane. Metamaterial structure is loaded at the top side of the patches for bandwidth improvement and mutual coupling reduction. The proposed antenna provides UWB mode of operation from 2.6–12 GHz. The characteristic mode theory is applied to examine each physical mode of the antenna aperture and access its many physical parameters without exciting the antenna. Mode 2 was the dominant mode among the three modes used. Considering the almost inevitable presence of mutual coupling effects within compact multiport antennas, we developed an additional decoupling technique in the form of perturbed stubs, which leads to a mutual coupling reduction of less than 20 dB. Finally, different performance parameters of the system, such as envelope correlation coefficient (ECC), channel capacity loss (CCL), diversity gain, total active reflection coefficient (TARC), mean effective gain (MEG), surface current, and radiation pattern, are presented. A prototype antenna is fabricated and measured for validation.


Sign in / Sign up

Export Citation Format

Share Document