scholarly journals Study of Relative Association, Apparent Molar Compressibility and Free Length of Entacapone API in alcohols at different Frequencies

2016 ◽  
Vol 50 (4) ◽  
pp. 703-707
Author(s):  
Sachin Deorao Zade ◽  
Padma Sachin Zade ◽  
Pravin J. Ganjre ◽  
Sunanda Shashikant Aswale ◽  
Shashikant Rajeshwar Aswale
Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1898
Author(s):  
Marek Urbański

A new type of HFRP hybrid bars (hybrid fiber reinforced polymer) was introduced to increase the rigidity of FRP reinforcement, which was a basic drawback of the FRP bars used so far. Compared to the BFRP (basalt fiber reinforced polymer) bars, modification has been introduced in HFRP bars consisting of swapping basalt fibers with carbon fibers. One of the most important mechanical properties of FRP bars is compressive strength, which determines the scope of reinforcement in compressed reinforced concrete elements (e.g., column). The compression properties of FRP bars are currently ignored in the standards (ACI, CSA). The article presents compression properties for HFRP bars based on the developed compression test method. Thirty HFRP bars were tested for comparison with previously tested BFRP bars. All bars had a nominal diameter of 8 mm and their nonanchored (free) length varied from 50 to 220 mm. Test results showed that the ultimate compressive strength of nonbuckled HFRP bars as a result of axial compression is about 46% of the ultimate strength. In addition, the modulus of elasticity under compression does not change significantly compared to the modulus of elasticity under tension. A linear correlation of buckling load strength was proposed depending on the free length of HFRP bars.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Vikrant Abbot ◽  
Poonam Sharma

AbstractFlavonoids amongst the class of secondary metabolites possess numerous health benefits, are known for its use in pharmaceutical industry. Quercetin, a flavonoid has more prominent medical advantages however its utilization is constrained because of various instability and insolubility issues and therefore, taken into consideration for studying its physico-chemical properties. In view of that, the thermodynamic and thermoacoustic properties of quercetin were examined in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB) at different hydroethanolic concentrations and temperatures. The conductivity studies were used to calculate change in enthalpy (∆Hom), change in entropy (∆Som) and change in Gibbs free Energy (∆Gom) of micellization. The interactions between quercetin and CTAB were found to be endothermic, entropically controlled and spontaneous. Further, ultrasonic sound velocity and density studies were carried out and utilized for the calculation of thermoacoustic parameters i.e. apparent molar volume and apparent molar compressibility. Thermoacoustic properties revealed that at higher surfactant concentration, hydrophobic interactions are dominant. The results suggested that the flavonoid-surfactant interactions in hydroethanolic solutions is more favourable as compared with aqueous solution. Overall, the data is favourable for the framework to be used for detailing advancement, drug development, drug industry, pharmaceutical industry, medical administration and formulation development studies.


2013 ◽  
Vol 5 (4) ◽  
Author(s):  
Nick Eckenstein ◽  
Mark Yim

Two new designs for gravity compensated modular robotic systems are presented and analyzed. The gravity compensation relies on using zero-free-length springs approximated by a cable and pulley system. Simple yet powerful parallel four-bar modules enable the low-profile self-contained modules with sequential gravity compensation using the spring method for motion in a vertical plane. A second module that is formed as a parallel six-bar mechanism adds a horizontal motion to the previous system that also yields a complete decoupling of position and orientation of the distal end of a serial chain. Additionally, we introduce the concept of vanishing effort where as the number of modules that comprise an articulated serial chain increases, the actuation authority required at any joint reduces. Essentially, this results in a method for distributing actuation along the length of an articulated chain. Prototypes were designed and constructed validating the analysis and accomplishing the functions of a general serial-type manipulator arm.


2015 ◽  
Vol 801 ◽  
pp. 188-193
Author(s):  
Dumitru Bolcu ◽  
Marius Marinel Stănescu ◽  
Cosmin Mihai Miriţoiu ◽  
Cristian Oliviu Burada

In this paper we have studied the vibration damping for composite bars made by dammar based natural resin, the reinforcement being made by flax, cotton, silk and hemp fibers. There were made rectangular section samples (5x10 mm) with 220 mm length. The bars were clamped, the free length being 100 mm, 120 mm, 140 mm, 160 mm and 180 mm. For each bar, the free vibrations made by an initial deformation, obtained by inserting an external force in the free end, were recorded. In each case, the measured vibration was under-damped.


2019 ◽  
Vol 31 (12) ◽  
pp. 2719-2724
Author(s):  
Sailaja Muchipali ◽  
Ranjan Kumar Pradhan ◽  
Priyaranjan Mohapatra ◽  
Braja B. Nanda

The intermolecular free-length of 1-butyl-2,3-dimethylimidazolium chloride [bdmim]Cl in pure water as well as in tetra-n-butyl ammonium bromide (TBAB) + water at different concentrations of solute and at T = (298.15 to 313.15) K have been evaluated by making use of ultrasonic and thermoacoustical parameters followed by a comparative study. To accomplish this objective, thermoacoustical parameters for the above said solutions have been calculated. These parameters have been used to determine intermolecular free-length (Lf) for the solutions under study. The values of Lf obtained by thermoacoustical approach were tallied with the values obtained by well-known ultrasonic method (Schaaffs method). To the best of our understanding, this study is an innovative attempt in the determination of inter-molecular free-length present in the investigated solutions by making use of ultrasonic approach.


Author(s):  
Jonathan Wickert

A flex circuit connects the stationary electronic components in a hard disk drive to the rotating arm that carries the read/write heads and positions them above data tracks on the disk. Flex circuits are conventionally formed as a laminate of polyimide substrate, adhesive, and copper conductors. Deformation of a flex circuit is discussed in the context of the following stages: the initial unstressed shape, configurations in which stresses set and relax in response to elevated temperature, equilibrium, and small amplitude vibration. The model involves displacements of the flex circuit in the directions tangent and normal to the local equilibrium shape, and those motions couple with the arm’s dynamics. Nonlinearity associated with finite curvature, partial elastic springback, and the arm’s geometry and inertia properties are incorporated within the vibration model to predict system-level natural frequencies, mode shapes, and coupling factors between the circuit and the arm. Laboratory measurements using noncontact laser interferometry validate the model with respect to the circuit’s shape, stiffness, restoring moment, and natural frequencies. The primary degrees of freedom for optimizing flex circuit design are the thicknesses of the individual layers within the circuit, free length, and the locations and slopes of the circuit’s attachment points to the arm and electronics block. The model’s predictions and trends developed from a case study in free length are discussed with a view toward reducing coupling between the circuit and arm in certain vibration modes.


Author(s):  
Miranda M. Tanouye ◽  
Vishesh Vikas

Traditional tensegrity mechanisms are comprised of compressive (rigid rods) and tensile members (strings). Compliant tensegrity mechanisms (CoTM) introduce springs alongside strings and rods, allowing these structures to be more adaptable and robust. The kinematic and stability analyses of such mechanisms will facilitate better behavioral understanding for control of such structures. Generally, the kinematic analysis assumes zero-free length (ZFL) springs which facilitates simplification of equations of motion. However, a general ZFL does not exist and the relaxation of ZFL assumption for a CoTM introduces computational complexities resulting from their non-linear nature. The research considers equilibrium and stability analysis of a planar CoTM mechanism consisting of two triangular platforms connected by a compressive member and two spring elements. For an assumed numerical example, the analysis illustrates the increase in computation complexity, and non-linear behavior of equilibrium and stable solutions as assumption is relaxed from 1) both spring ZFL, to 2) one spring ZFL, and 3) no spring ZFL.


Sign in / Sign up

Export Citation Format

Share Document