scholarly journals Drought Resistance Assessment of Four Shrub Species Including Nandina Domestica for Extensive Green Roof

2014 ◽  
Vol 16 (4) ◽  
pp. 267-273
Author(s):  
Chang-Seob Shin ◽  
Hexi Li
Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 298
Author(s):  
Anna Krawczyk ◽  
Iwona Domagała-Świątkiewicz ◽  
Agnieszka Lis-Krzyścin

Over the last decade, an increase in the use of locally available, recycled, and waste materials as growing media components have occurred in various regions of the world in extensive green roof technology. For eco-concept reasons, such a strategy appears to be appropriate, but can be problematic due to difficulties in obtaining proper parameters of growing substrate. The growing media should be properly engineered in order to enable the proper functioning of green roofs and provide suitable environment for ideal root growth. The aim of the study was to assess the utility of locally occurring waste materials for growing media composition and estimate plant- and time-dependent changes in the physico-chemical parameters of waste-based substrates in a simulated extensive green roof system during a two-year Sedum acre L. cultivation. Five different substrate compositions were prepared using silica waste, crushed brick, Ca- and Zn-aggregates, melaphyre, tuff, sand, muck soil, urban compost, spent mushroom, and coconut fibres. Optimal water capacity, particle-size distribution, pH and salts concentration were found in all substrates. A higher concentration of macronutrients (N, P, K, Mg) and trace elements (B, Cu, Fe, Mn, Zn, Cd, Ni, Pb, and Cr) was found in waste-based substrates than in the commercial medium. In comparison to the parameters determined before establish the experiment, bulk density of tested growing media decreased, except for the substrates where the source of organic matter was the rapidly mineralising spent mushroom. The organic matter content in substrates after the two-year vegetation increased in relation to the ready-made substrate, with the exception of the composition with spent mushroom. After two years of the experiment, all available macronutrients and trace elements (with the exception of mineral N, K, SO4-S, and B) concentration were higher than in 2014, while pH, salt concentration was lower. In general, plants grown in waste substrates had lower dry matter content and higher biomass. A significantly higher biomass of S. acre L. was found in the first year of the experiment. In the second year of the research, the plants grown in the commercial medium, the substrate with silica waste, and the substrate with spent mushroom produced higher biomass than in the first year. No symptoms of abnormal growth were observed, despite the higher trace element concentrations in plants collected from waste-based substrate. Waste-based growing media can be considered as a valuable root environment for S. acre L. in an extensive green roof system.


2021 ◽  
Vol 13 (6) ◽  
pp. 3078
Author(s):  
Elena Giacomello ◽  
Jacopo Gaspari

The water storage capacity of a green roof generates several benefits for the building conterminous environment. The hydrologic performance is conventionally expressed by the runoff coefficient, according to international standards and guidelines. The runoff coefficient is a dimensionless number and defines the water retention performance over a long period. At the scale of single rain events, characterized by varying intensity and duration, the reaction of the green roof is scarcely investigated. The purpose of this study is to highlight how an extensive green roof—having a supposed minimum water performance, compared to an intensive one—responds to real and repetitive rain events, simulated in a rain chamber with controlled rain and runoff data. The experiment provides, through cumulative curve graphs, the behavior of the green roof sample during four rainy days. The simulated rain events are based on a statistical study (summarized in the paper) of 25 years of rain data for a specific location in North Italy characterized by an average rain/year of 1100 mm. The results prove the active response of the substrate, although thin and mineral, and quick draining, in terms of water retention and detention during intense rain events. The study raises questions about how to better express the water performance of green roofs.


2017 ◽  
Vol 108 ◽  
pp. 194-202 ◽  
Author(s):  
Anna Krawczyk ◽  
Iwona Domagała-Świątkiewicz ◽  
Agnieszka Lis-Krzyścin

2016 ◽  
Vol 34 (S2) ◽  
pp. S226-S234 ◽  
Author(s):  
Antonio Gagliano ◽  
Francesco Nocera ◽  
Maurizio Detommaso ◽  
Gianpiero Evola

2012 ◽  
Vol 47 ◽  
pp. 165-173 ◽  
Author(s):  
Paulo Cesar Tabares-Velasco ◽  
Mingjie Zhao ◽  
Nicole Peterson ◽  
Jelena Srebric ◽  
Robert Berghage

2011 ◽  
Vol 43 (12) ◽  
pp. 3548-3557 ◽  
Author(s):  
Kristin L. Getter ◽  
D. Bradley Rowe ◽  
Jeff A. Andresen ◽  
Indrek S. Wichman

Sign in / Sign up

Export Citation Format

Share Document